Revisiting the Second Law of Thermodynamics: Challenges and Misconceptions

Authors

  • Efstratios L. Ntantis Amity University Dubai, Academic City, Dubai, UAE.
  • Vasileios Xezonakis University of East London, Docklands Campus, London, UK.

DOI:

https://doi.org/10.31181/rme322

Keywords:

Carnot Cycle, Heat Engine, Entropy, Energy Conservation.

Abstract

Since the 1850s, numerous thermodynamic concepts have been proposed. Nicolas Carnot laid the foundation of the second law of thermodynamics in 1824 with insightful work on reversible cycles, well before James Joule’s 1843 discovery of the energy conservation law. In 1941, Leonard Bridgman remarked that the second thermodynamic law had been formulated nearly as often as discussed, highlighting its ongoing complexity and intrigue. Despite extensive discussions and formulations, understanding the second law remains challenging, prompting continuous efforts to clarify it, as explored in this paper. The second law of thermodynamics, which addresses irreversible transformations and the direction of natural processes, encompasses a wide range of phenomena across the universe, along with various challenges and misconceptions. The current paper revisits and modifies Carnot’s original proposals for reversible heat engines. It emphasizes the difficulty of achieving more efficient reversible processes within the context of irreversible processes, which adds complexity to the second law and its potential violations. However, the concept remains that the entropy of every energy system is always increasing, and entropy cannot be removed, only transferred or altered.

 

References

Allday, J. (2016). Quarks, leptons and the big bang. CRC Press. https://doi.org/10.1201/9781315381367

Behar, O., Khellaf, A., & Mohammedi, K. (2013). A review of studies on central receiver solar thermal power plants. Renewable and sustainable energy reviews, 23, 12-39. https://doi.org/10.1016/j.rser.2013.02.017

Cápek, V., & Sheehan, D. P. (2005). Challenges to the second law of thermodynamics. Springer. https://doi.org/10.1007/1-4020-3016-9

Carnot, S. (1824). Reflections on the Motive Power of Heat, English translation by R.H. . Thurston. http://www.thermohistory.com/carnot.pdf

Cengel, Y. A. (2011). Thermodynamics: an engineering approach. In: McGraw-Hill. http://charnnarong.me.engr.tu.ac.th/charnnarong/My%20classes/ME230/Chap1.pdf.

de Hemptinne, J.-C., Ferrando, N., Hajiw-Riberaud, M., Lachet, V., Maghsoodloo, S., Mougin, P., Ngo, T. D., Pigeon, L., Yanes, J. R., & Wender, A. (2023). Carnot: a thermodynamic library for energy industries. Science and Technology for Energy Transition, 78, 30. https://doi.org/10.2516/stet/2023023

De Hemptinne, J.-C., Kontogeorgis, G. M., Dohrn, R., Economou, I. G., Ten Kate, A., Kuitunen, S., Fele Žilnik, L., De Angelis, M. G., & Vesovic, V. (2022). A view on the future of applied thermodynamics. Industrial & Engineering Chemistry Research, 61(39), 14664-14680. https://doi.org/10.1021/acs.iecr.2c01906

Eddington, S. A. S. (1968). The nature of the physical world. University of Michigan Press. https://assets.cambridge.org/97811076/63855/frontmatter/9781107663855_frontmatter.pdf

Feidt, M., & Costea, M. (2024). Variations on the models of Carnot irreversible thermomechanical engine. Journal of Non-Equilibrium Thermodynamics, 49(2), 135-145. https://doi.org/10.1515/jnet-2023-0109

Gonzalez-Ayala, J., & Angulo-Brown, F. (2013). The universality of the Carnot theorem. European Journal of Physics, 34(2), 273. https://doi.org/10.1088/0143-0807/34/2/273

Goold, J., Huber, M., Riera, A., Del Rio, L., & Skrzypczyk, P. (2016). The role of quantum information in thermodynamics—a topical review. Journal of Physics A: Mathematical and Theoretical, 49(14), 143001. https://doi.org/10.1088/1751-8113/49/14/143001

Guerra, D. M. (2021). Sadi Carnot. Prisma Tecnológico, 12(1), 82-85. https://doi.org/10.33412/pri.v12.1.2984

Haleem, D., Kafafy, R., & Ntantis, E. L. (2024). Feasibility of solar energy as a sustainable renewable resource in the UAE. MRS Energy & Sustainability, 1-13. https://doi.org/10.1557/s43581-024-00108-z

Heywood, J. B. (1988). Combustion engine fundamentals. 1ª Edição. Estados Unidos, 25, 1117-1128. https://www.solutions-practice.com/uploads/b/ebeb4690-ed34-11ed-ba72-8735d4e660b1/c7cd6850-0279-11ee-be8c-35c15d5e9396.pdf

Hundy, G. F. (2016). Refrigeration, air conditioning and heat pumps. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-100647-4.00002-4

Jaffe, K. (2024). Infodynamics, Information Entropy and the Second Law of Thermodynamics. https://doi.org/10.32388/T13JP9.4

Kostic, M. (2004). Irreversibility and reversible heat transfer: The quest and nature of energy and entropy. In ASME International Mechanical Engineering Congress and Exposition (Vol. 47012, pp. 101-106). https://doi.org/10.1115/IMECE2004-59282

Kostic, M. M. (2011). Revisiting the second law of energy degradation and entropy generation: From Sadi Carnot's ingenious reasoning to Holistic generalization. In AIP Conference Proceedings (Vol. 1411, pp. 327-350). American Institute of Physics. https://doi.org/10.1063/1.3665247

Kostic, M. M. (2014). The elusive nature of entropy and its physical meaning. Entropy, 16(2), 953-967. https://doi.org/10.3390/e16020953

Kostic, M. M. (2018). Nature of Heat and Thermal Energy: From Caloric to Carnot’s Reflections, to Entropy, Exergy, Entransy and Beyond. Entropy, 20(8), 584. https://doi.org/10.3390/e20080584

Kostic, M. M. (2020). " Heat Flowing from Cold to Hot without External Intervention" Demystified: Thermal-Transformer and Temperature Oscillator. arXiv preprint arXiv:2001.05991. https://doi.org/10.48550/arXiv.2001.05991

Lee, J. S., & Park, H. (2017). Carnot efficiency is reachable in an irreversible process. Scientific reports, 7(1), 10725. https://doi.org/10.1038/s41598-017-10664-9

Li, D. (2022). Second Law of Engineering Thermodynamics. In Analytical Thermodynamics (pp. 177-194). Springer. https://doi.org/10.1007/978-3-030-90517-0_4

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons. https://books.google.com.pk/books?hl=en&lr=&id=oyt8iW6B4aUC&oi=fnd&pg=PA21&dq=Fundamentals+of+Engineering+Thermodynamics&ots=9-I6sxo4MW&sig=f9rnHpiA0pXH6Sm2SrXA2zUANFM&redir_esc=y#v=onepage&q=Fundamentals%20of%20Engineering%20Thermodynamics&f=false

Mulki, R. R., & Ntantis, E. L. (2024). Study of Microwave Electrothermal Propulsion System. In Proceedings of the 8th International Conference on Research, Technology and Education of Space, H-Space (pp. 25-26). https://www.researchgate.net/profile/Efstratios-Ntantis/publication/378802860_Study_of_microwave_electrothermal_propulsion_system/links/6752e29fef2dc67228ac4b2b/Study-of-microwave-electrothermal-propulsion-system.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge university press. https://doi.org/10.1119/1.1463744

Ntantis, E. (2009). Capability expansion of non-linear gas path analysis Cranfield university. School of Engineering. Department of Power and Propulsion]. https://doi.org/10.12681/eadd/27098.

Ntantis, E. L., & Botsaris, P. N. (2015). Diagnostic Methods for an Aircraft Engine Performance. Journal of Engineering Science & Technology Review, 8(4). http://www.jestr.org/downloads/Volume8Issue4/fulltext84102015.pdf

Ntantis, E. L., & Xezonakis, V. (2024). Optimization of electric power prediction of a combined cycle power plant using innovative machine learning technique. Optimal Control Applications and Methods, 45(5), 2218-2230. https://doi.org/10.1002/oca.3152

Oliveira, M. J. d. (2024). Reflexões de Sadi Carnot. Revista Brasileira de Ensino de Física, 46, e20240103. https://doi.org/10.1590/1806-9126-rbef-2024-0103

Orange, A. (1972). The origins of the British Association for the Advancement of Science. The British journal for the history of science, 6(2), 152-176. https://doi.org/10.1017/S0007087400012267

Philippi, P. C. (2024). The Second Principle. In Thermodynamics: From Fundamentals to Multiphase and Multicomponent Systems (pp. 29-84). Springer. https://doi.org/10.1007/978-3-031-49357-7_2

Prigogine, I., & Hiebert, E. N. (1982). From being to becoming: Time and complexity in the physical sciences. In: American Institute of Physics. https://doi.org/10.1063/1.2890013.

Raman, C. V., & Ramanathan, K. (1923). The molecular scattering of light in carbon dioxide at high pressures. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 104(726), 357-368. https://doi.org/10.1098/rspa.1923.0114

Reyes-Ayala, I., Miotti, M., Hemmerling, M., Dubessy, R., Perrin, H., Romero-Rochin, V., & Bagnato, V. S. (2023). Carnot Cycles in a Harmonically Confined Ultracold Gas across Bose–Einstein Condensation. Entropy, 25(2), 311. https://doi.org/10.3390/e25020311

Rowe, D. M. (2018). Thermoelectrics handbook: macro to nano. CRC press. https://orca.cardiff.ac.uk/id/eprint/31643

Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design. John Wiley & Sons. https://doi.org/10.1002/9780470172605

Sheehan, D. (2008). Energy, entropy and the environment (How to increase the first by decreasing the second to save the third). Journal of Scientific Exploration, 22(4), 459. https://paradigmcontent.s3.amazonaws.com/jse.sheehan.energyentropy.pdf

Snyder, G. J. (2008). Small thermoelectric generators. The Electrochemical society interface, 17(3), 54. https://doi.org/10.1149/2.F06083IF

Stoecker, W. F., & Jones, J. (1981). Refrigeration and Air conditioning. https://soaneemrana.org/onewebmedia/REFRIGERATION%20&%20AIR%20CONDITIONING%20BY%20W.F.%20STOECKER%20&%20J.W%20JHONES.pdf

Tjiang, P. C., & Sutanto, S. H. (2006). The efficiency of the Carnot cycle with arbitrary gas equations of state. European Journal of Physics, 27(4), 719. https://doi.org/10.1088/0143-0807/27/4/004

Xezonakis, V., & Ntantis, E. L. (2023). Modelling and Energy Optimization of a Thermal Power Plant Using a Multi-Layer Perception Regression Method. WSEAS Transactions on Systems and Control, 18, 243-254. https://doi.org/10.37394/23203.2023.18.24

Xue, T.-W., Zhao, T., & Guo, Z.-Y. (2024). A Symmetric Form of the Clausius Statement of the Second Law of Thermodynamics. Entropy, 26(6), 514. https://doi.org/10.3390/e26060514

Downloads

Published

2024-12-14

How to Cite

Revisiting the Second Law of Thermodynamics: Challenges and Misconceptions. (2024). Reports in Mechanical Engineering, 5(1), 33-42. https://doi.org/10.31181/rme322