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 Four fractal nonlinear oscillators (The fractal Duffing oscillator, fractal 

attachment oscillator, fractal Toda oscillator, and a fractal nonlinear oscillator) 

are successfully established by He’s fractal derivative in a fractal space, and 

their variational principles are obtained by semi-inverse transform method. 

The approximate frequency of the four fractal oscillators are found by a simple 

frequency formula. The results show the frequency formula is a powerful and 

simple tool to a class of fractal oscillators. Keywords: 
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Semi-inverse transform method. 
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1. Introduction 

The partial differential equations (PDEs) arise in many fields like the condense matter physics, fluid 

mechanics, economics and management, etc. There are many methods for solving nonlinear PDEs, for 

example, the homotopy perturbation method (Anjum & He, 2020a, 2020b; He, 2003; He & El-Dib, 2020; Yu, 

et al., 2019), variational iteration method (Anjum & He, 2019; He, 1999), Taylor series method (He, 

2019,2020a; He & Ji, 2019a; He, et al., 2020), Exp-function method (He, 2013; He & Wu, 2006), and 

variational-based methods (He, 2020b,2021; He & Ai, 2020). In this paper, we maily study on a class of 

vibration equation (He, et al., 2021a) 

'' ( ) 0mw h w                     (1) 

with the initial condition 

(0) , '(0)w a w b                     (2) 

where  m is the mass,  h is the nonlinear restoring force, and a  and b  are constants.  

Vibration is the intrinsic property of a packing system, and so far there is no way to stop the vibration, the 

frequency-amplitude is the main factor for designing a packing system (Song, 2020). The frequency 

formulation for oscillator (1) was proposed as (He, et al., 2021a) 
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where  A  is the amplitude, it can be approximated calculated as 

2
2

2

b
A a


                     (4) 

and N  is 3 / 2 for non-singular oscillators and 0.8 for singular oscillators. 

2. Fractal Duffing oscillator 

Consider the following well-known Duffing oscillator (He, et al., 2021b) 
2

3

2
0

d w
w w

dt
                                                                                                    (5) 

with the initial condition 

(0) , '(0) 0w A w                     (6) 

Variational principle of fractal Duffing oscillator 

In a fractal space, Eq. (5) can be described by He’s fractal derivative as follows 

3( ) 0
H HD Dw

w w
Dt Dt 

                      (7) 

with the initial condition 

(0)
(0) , 0

H Dw
w A

Dt
                     (8) 

where  /H Dw Dt  is He’s fractal derivative and is defined as follows (He,2018) 

0

0
0

00

( ) ( )
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t t t
t

w t w tDw
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Dt t t 


 
 


  


                   (9) 

The variational principle (He, 2020c) of Eq. (7) can be given by semi-inverse transform method as follows 

2 2 41 1 1
( ) ( )

2 2 4

H
HDw

J w w w Dt
Dt






 
   

 
                    (10) 

 Fractal frequency formula 

Using the two-scale transform method (He & Ji, 2019b) to Eq. (7) and assume 

T t                    (11) 

therefore, Eq. (7) can be written as follows 

3( ) 0
H HD Dw

w w
DT DT

                      (12) 

with the initial condition 



Reports in Mechanical Engineering  ISSN: 2683-5894  

 

Frequency formula for a class of fractal vibration system (Yi Tian) 

57 

(0)
(0) , 0

H Dw
w A

DT
                     (13) 

Adopt the frequency formula (3), and the approximate frequency can be easily obtained as follows 

3
2

3

2

3
1

4
w A

w w
A

w


 




                      (14) 

Table 1. Comparison of  Eq. (14) with Eq. (24) in (He, et al., 2021b) 

2A  0 0.001 0.0025 0.003 0.005 0.007 0.009 

Eq.(14) 1 1.000375 1.0009371 1.001124 1.0018724 1.002622 1.003369 

Eq.(24) in (He,et 

al. 2021b) 
1 1.000375 1.0009375 1.001125 1.001875 1.002625 1.003375 

Exact frequency 1 1.000380 1.0009442 1.00113 1.0018726 1.002613 1.003369 

Remark 1. 

      The Eq. (14) gives more accurate results than Eq.(24) in (He, et al., 2021b) for the fractal Duffing oscillator. 

3. Fractal attachment oscillator 

Consider the following attachment oscillator (Ren, et al., 2019) 

2

2 3
0

d u

dt u


                     (15) 

with the initial condition 

(0) , '(0) 0u A u                     (16) 

Variational principle of fractal attachment oscillator 

In a fractal space, Eq. (15) can be described by He’s fractal derivative as follows 

3
( ) 0

H HD Du

Dt Dt u 


                     (17) 

with the initial condition 

(0)
(0) , 0

H Du
u A

Dt
                     (18) 

where  / H Du Dt  is He’s fractal derivative and is defined as follows  
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
                   (19) 

The variational principle of Eq. (17) can be given by semi-inverse transform method as follows 

2
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( ) ( )

2 2
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 Fractal frequency formula 

Using the two-scale transform method to Eq. (17) and assume 

T t                    (21) 

therefore, Eq. (17) can be written as follows 

3
( ) 0

H HD Du

DT DT u


                     (22) 

with the initial condition 

(0)
(0) , 0

H Du
u A

DT
                     (23) 

Adopt the fractal frequency formula (3), and the approximate frequency can be easily obtained as follows 

4 4

0.8

1.5625

u A
u A

 




                     (24) 

Remark 2. 

      In (Ren,et al., 2019), the explicit form of the frequency formula of attachment oscillator is not given. 

4. Fractal Toda oscillator 

Consider the following Toda oscillator (He, et al., 2021c) 

2

2
1 0ud u

e
dt

                      (25) 

with the initial condition 

(0) , '(0) 0u A u                     (26) 

Variational principle of fractal Toda oscillator 

In a fractal space, Eq. (25) can be described by He’s fractal derivative as follows 

( ) 1 0
H H

uD Du
e

Dt Dt 
                      (27) 

with the initial condition 

(0)
(0) , 0

H Du
u A

Dt
                     (28) 

where  / H Du Dt  He’s fractal derivative and is defined as follows 
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
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
                   (29) 

The variational principle of Eq. (27) can be given by semi-inverse transform method as follows 

21
( ) ( )

2

H
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J u e u Dt
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 
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 
                    (30) 
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 Fractal frequency formula 

Using the two-scale transform method to Eq. (27) and assume 

T t                    (31) 

therefore, Eq. (27) can be written as follows  

( ) 1 0
H H

uD Du
e

DT DT
                      (32) 

with the initial condition 

(0)
(0) , 0

H Du
u A

DT
                     (33) 

Adopt the frequency formula (3), and the approximate frequency can be easily obtained as follows 

3

2

3

2

1 2( 1 )

3

A

u

u A

e e

u A




  
                     (34) 

Remark 3. 

      In (He, et al., 2021c), the frequency formula (34) is not given for Toda oscillator. 

5. A fractal nonlinear oscillator 

Consider the following nonlinear oscillator (He, 2014) 

2
2 3

1 22
0

d u
u u u

dt
                        (35) 

with the initial condition 

(0) , '(0) 0u A u                     (36) 

Variational principle of a fractal nonlinear oscillator 

In a fractal space, Eq. (35) can be described by He’s fractal derivative as follows 

2 3

1 2( ) 0
H HD Du

u u u
Dt Dt 

                        (37) 

with the initial condition 

(0)
(0) , 0

H Du
u A

Dt
                     (38) 

where  / H Du Dt  He’s fractal derivative and is defined as follows 
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The variational principle of Eq. (37) can be given by semi-inverse transform method as follows 
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 Fractal frequency formula 

Using the two-scale transform method to Eq. (37) and assume 

T t                    (41) 

therefore, Eq. (37) can be written as follows  

2 3

1 2( ) 0
H HD Du

u u u
DT DT

                        (42) 

with the initial condition 

(0)
(0) , 0

H Du
u A

DT
                     (43) 

Adopt the frequency formula (3), and the approximate frequency can be easily obtained as follows 

2 2

1 2 1 23

2

3 3
1 1

2 4u A

u u A A    


                         (44) 

We write down Nayfeh’s result (He, 2014) for comparison 

2 2

2 1

3 5
1 ( )

8 12
A                        (45) 

Table 2. Comparison of Eq. (44) with Eq. (45) 

A  1  2  Eq.(44) Eq.(45) Relative error 

1 0.001 0.001 1.00081 1.00037 0.044% 

1 0.01 0.05 1.02282 1.01871 0.4% 

10 0.0001 0.0005 1.019 1.01875 0.025% 

10 0.001 0.0025 1.09369 1.09371 0.0018% 

100 0.01 0.0005 2.36982 2.45833 3.7% 

100 0.005 0.00025 1.81879 1.83333 0.8% 

Remark 4. 

     Table 2 shows the good agreement between Eq. (44) and Eq. (45). 

6. Conclusions 

In this paper, four nonlinear oscillators are described by He’s fractal derivative in a fractal space, and their 

variational principle are successfully established via semi-inverse transform method. The two-scale transform 

method and fractal frequency formulas are adopted to find the approximate frequency of fractal oscillator 

equation. The examples show the frequency formula is simple and effective. 
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