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 Recently, much research has been performed involving the mechanical 

analysis of biological and polymeric samples with the use of Atomic Force 

Microscopy (AFM). Such materials require careful treatments which consider 

the rate-dependence of their viscoelastic response. Here, we review the 

fundamental theories of linear viscoelasticity, as well as their application to 

the analysis of AFM spectroscopy data.  An outline of general viscoelastic 

mechanical phenomena is initially given, followed by a brief outline of AFM 

techniques.  Then, an extensive outline of linear viscoelastic material models, 

as well as contact mechanics descriptions of AFM systems, are presented. 
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1. Introduction to Viscoelasticity 

1.1. Physical Mechanisms 

When a material is stressed, the underlying atomic structure responds by deforming along the direction of 

the applied force.  In the case of simple crystalline materials this structural deformation can just be an 

elongation of the bonds between the atoms in the lattice; however, for chain-like molecular materials this 

deformation can take place through multiple modes occurring at a range of timescales, the quickest being the 

stretching of the atomic bond lengths and the bending of the bond angles.  This type of response is very similar 

to the response seen in crystalline materials with the addition of the bond angle bending.  The slower response 

occurs when entire molecules move and rearrange themselves as a unit.  These types of configurational changes 

are entropic in nature, thus their rates are proportional to the temperature of the material (Roylance, 2001).  

Take glass for instance – at high temperatures, the configurational changes occur readily, thus the material is 

expected to behave like a fluid (this is the so-called rubbery region).  However, at low temperatures, the 

configurational changes occur slowly, thus the only practical deformation in the material occurs through 

molecular stretching, which results in a brittle, solid-like material (this is the so-called glassy region) 

(Roylance, 2001).  At intermediate temperatures, the material response is somewhere between the viscous-

fluidic and elastic-solid responses, and is dubbed the leathery or ‘viscoelastic’ regime. Such intermediate 

temperature ranges vary by material; however, the principal characteristics of viscoelastic materials remain 

constant. 
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In the viscoelastic regime, polymer-based materials respond through a combination of bond bending and 

stretching, as well as chain slippage.  When unstretched, these polymers exist in a configuration which ranges 

between highly ordered, nearly crystalline and highly disordered, interwoven chains as seen in Figure 1.a.  

When a load or strain is first applied, the polymer system responds primarily through an uncoiling of its 

chains by the bending and stretching of the chemical bonds within each molecule.   

 

 
Figure 1. Deformations of a Polymer System: (a) pre-loading state with coiled and intertwined chains; (b) 

intermediate state, during which chains begin to uncoil primarily through bond stretching and bond angle 

bending; (c) highly stretched state, during which large scale deformations occur primarily via chain slippage. 

 

The initial polymer rearrangement described above may occur very rapidly, typically on the order of 

10−12 𝑠 and is mostly reversible, as the bonds can simply snap back to their original states as seen in an 

alternation between the states seen in Figure 1.a to b, and back to a (Roylance, 2001).  As the applied load 

increases, a slower, irreversible deformation, or creep, takes place as the chains slide past each other in a 

process governed by the intermolecular potential.  If the applied strain remains constant, the internal stress of 

the material will relax through the molecular slip mechanism, thus dissipating the energy gained by the 

substance through the deformation process.  The effects of the dissipative action within the viscoelastic material 

typically manifests themselves as a hysteresis loop in a loading cycle, as seen in Figure 2.b.  Such loading 

cycles are observable macroscopically, as well as microscopically, such as in the case of micro- and 

nanoindentation experiments.   

 

 
Figure 2. Multiple Inputs and Viscoelastic Responses: (a) relationships between the strain rate applied to the 

material and the material’s response (stress in this case); (b) dissipation associated with viscoelasticity and 

corresponding hysteresis in the cyclical loading curves; (c) strain creep and creep recovery as a result of a 

constant, step-like stress input; (d) stress relaxation under a constant strain. 

 

An example of irreversible molecular motions is provided in Figure 1.c.  This is the type of rearrangement 

that provides the viscous-fluidic action to the material (Roylance, 2001).  As these motions are essentially 

fluidic, the stress–strain relationship is rate dependent (Figure 2.a) and has a lagging response which may be 

referred to as creep / creep recovery as depicted in Figure 2.c or stress relaxation as depicted in Figure 2.d 

(Findley et al., 1989).   Although polymer systems most obviously display such  viscoelastic behaviors, every 
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material exhibits these properties to some extent: given sufficient time, even the stiffest metals will creep and 

relax; albeit, these behaviors may be practically imperceptible (Tschoegl, 1989).  Thus, understanding how 

viscoelastic behaviors impact materials is essential in the field of engineering both at large and small length 

scales. 

Of significant importance for motorsports enthusiasts, for example, is the application of viscoelastic 

mechanics to tire behavior.  Due to the extreme range of loading conditions present on a racetrack, the proper 

understanding of the time- or frequency-dependent mechanical response of tires is critical when optimizing the 

performance of a car (Igarashi et al., 2013; Takino et al., 1997).  Similarly, in the biomedical field, the 

viscoelastic analysis of tissues shows promise in better understanding impacts related brain injuries, bone 

mechanics, and even cancer cell metastasis (Mijailovic et al., 2018; Rother et al., 2014).  Consider the plot 

shown in Figure 3, which shows the theoretical absolute modulus of a hypothetical viscoelastic material, a 

measure for its effective stiffness over a range of harmonic loading frequencies.  In this one instance, a two 

order of magnitude difference in loading frequency results in a twofold increase in the apparent stiffness of the 

material.  Thus, in fields like biomimicry and prosthetics, it is essential to consider time- and frequency-

dependent changes in mechanical behaviors.  On a much smaller scale, certain micro electromechanical devices 

have exhibited temperature and rate dependent viscoelastic responses, both in metallic thin-film devices and in 

those held together by polymer-based adhesives (Kim et al., 2015; McLean et al., 2010).  As stated before, 

polymer-based systems tend to exhibit viscoelastic phenomena most readily and are therefore of significant 

interest within the field of viscoelasticity, independent of the size of the system. 

 
 

Figure 3. Theoretical Absolute Modulus (roughly a gauge of the effective stiffness) of a Hypothetical 

Material: Note the drastic change in value over the given loading frequency range. Viscoelastic materials 

tend to be stiffer at higher frequencies than at lower frequencies. 

 

2. Experimental Methods 

2.1. The Atomic Force Microscope (AFM) 

To investigate the viscoelastic mechanical responses of polymers and other viscoelastic systems at the 

micro- and nanometer level, the Atomic Force Microscope (AFM) is commonly employed.  First proposed in 

1986 by Gerd Binnig and Heinrich Rohrer, the AFM typically uses a series of piezoelectric actuators in a 

control loop to displace a cantilevered beam towards the surface of a sample, as seen in Figure 4 (Binnig et al., 

1986; Binnig and Rohrer, 1983).  Attached to the free end of this beam is a probe of a defined geometry, which 

interacts with the surface of the sample to induce deflections or rotations in the cantilever.  The motions of the 

cantilever are then generally captured by the reflections of a laser off the cantilever into a photodetector 

quadrant.  This measurement scheme allows for high-spatial-resolution imaging of the surface topography, as 

well as capturing localized mechanical properties of the sample.  A very useful book on AFM, providing a 

historical background, fundamental theory descriptions, an overview of the instrumentation, and an overview 

of the various methods available is the one published by Garcia (García, 2010).  The two primary experimental 

AFM modes for the measurement of viscoelastic material properties can be differentiated by the type of 
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excitation that is applied to the base or the tip of the cantilever.  In general, the excitations can be non-harmonic 

or harmonic. 

 

 

Figure 4. (a) Non-Harmonic AFM Experiment – the base of the cantilever is adjusted steadily, first 

driving the probe into the surface and then away from it, generally (although not always) at constant 

velocity; (b) Harmonic AFM Experiment – the base of the cantilever is made to oscillate according to a 

prescribed sinusoidal function, typically (although not always) at or near the cantilever’s resonance 

frequency.  In some AFM instruments harmonic excitations can also be applied directly to the cantilever 

tip. 

2.2. Non-Harmonic Experimental AFM Methods 

2.2.1. Force – Distance Curves 

Perhaps the simplest mode of operation of an AFM is the force–distance experiment (Kolluru et al., 2018).  

Such an experiment involves the prescribed displacement of the cantilever base towards the surface of a sample 

illustrated in Figure 4.a.  By measuring the deflection of the end of the cantilever as a function of the prescribed 

position of the base of the cantilever throughout this process, one may calculate the force and indentation of 

the probe–sample interaction.  Typically, the shape of the prescribed cantilever base position as a function of 

time is a triangular waveform, although smoother functions have also been used to remove artifacts generated 

by the discontinuity in the cantilever velocity, and to increase the stability of the system (Kolluru et al., 2018).  

Often referred to as quasi-static experiments, force–distance curves are one of the easiest experimental methods 

to perform and analyze (Garcia, 2020).  Further, multiple force–distance experiments may be performed over 

many points on a 2-dimensional grid on the sample surface to provide a mapping of the mechanical properties 

across the sample.  Such an approach constitutes a very valuable technique for the analysis of heterogeneous 

and biological materials, for example (Garcia, 2020; Radmacher et al., 1994, 1996). 

2.3. Harmonic Experimental AFM Methods 

2.3.1. Dynamic Mode 

Often, it is desired to measure softer materials or scan at a higher rate than is possible with a force–distance 

experiment.  Another operational mode of the AFM device enables such performance and is referred to as 

Dynamic AFM (García and San Paulo, 1999).  Strictly speaking, Dynamic AFM refers to a family of AFM 

imaging modes, which can be operated in intermittent-contact or noncontact fashion, depending on whether 

tip–sample contact is allowed during the oscillation of the probe.  Of these methods, the most common is the 

Amplitude-Modulation AFM method (AM-AFM), often referred to as Tapping Mode AFM, although it does 

not need to always be operated in a way that allows tip–sample intermittent contact.  Generally, a Tapping 
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Mode AFM experiment uses a piezoelectric actuator to oscillate the base (or tip) of the cantilever at or near its 

resonance frequency, in order to enable a more sensitive response of the cantilever tip when compared to quasi-

static methods (Magonov, 2001; Payam et al., 2015).  Throughout the measurement process, the oscillation 

amplitude, phase shift, and cantilever deflection are simultaneously measured, thus giving a high density of 

data acquisition (García and San Paulo, 1999).  A second widely used dynamic AFM method is the Frequency 

Modulation method (FM-AFM), in which the oscillation frequency is modulated by a control loop that seeks 

to hold constant the phase of the cantilever oscillation with respect to its excitation, and which is a powerful 

tool in sub-nanometer surface imaging (Gan, 2009).  In AM-AFM, the height of the base of the cantilever is 

adjusted to hold constant the amplitude of oscillation of the tip (García and San Paulo, 1999). In FM-AFM 

methods it is generally the tip oscillation frequency that is held constant (García, 2010).  Dynamic AFM modes 

offer an advantage over static AFM modes in that they avoid friction and adhesive surface forces, while 

enacting less destructive deformations on the sample (Gan, 2009; Jalili and Laxminarayana, 2004; Magonov, 

2001; Parvini et al., 2020; Saadi et al., 2020).  As such, these modes see popular use in the characterization of 

soft or fragile samples (Jalili and Laxminarayana, 2004).  Additionally, the frequency dependent viscoelastic 

response of a sample may be semi-quantitatively analyzed through the phase shift measurement (García et al., 

2007; Proksch et al., 2016). 

2.3.2. Contact Resonance 

Another common harmonic operational mode is Contact-Resonance AFM, in which the tip and sample stay 

in contact throughout the experiment.  This method belongs to the family of Dynamic AFM methods introduced 

above, but is worth discussing separately, as it has been widely used to study viscoelastic materials.  Typically, 

the tip is slightly indented into the sample while the cantilever is excited harmonically.  The initial indentation 

is typically chosen such that the tip and sample are in contact throughout the excitation process.  Either acoustic 

or piezoelectric excitations may be employed, depending on the application (Jesse et al., 2006; Kocun et al., 

2015; Rabe and Arnold, 1994).  During this excitation process, the harmonic properties of the tip–sample 

junction are measured, thus exploring the sample’s harmonic properties relative to those of the tip.  The junction 

is generally modeled as a linear spring in parallel with a linear damper.  Although these methods were originally 

developed to characterize the elastic properties of the materials (Hurley et al., 2003), currently they are used 

to characterize viscoelastic properties as well (Gannepalli et al., 2011; Killgore et al., 2011; Yuya et al., 2008).  

To achieve an optimum frequency characterization of the sample, it is ideal to probe it at multiple frequencies.  

In the case of Band Excitation AFM, another contact-dynamic AFM method, the cantilever is excited with a 

band of frequencies around the resonance frequency, typically through the use of sinc or chirp functions.  The 

ratio of the fast Fourier transform of the response and the provided band excitation function gives a transfer 

function that determines the material behavior within the given band (Jesse et al., 2014; Kareem and Solares, 

2012).  

3. Analytical Methods 

3.1 Linear Material Response 

One of the most basic approaches to analytically modeling materials based on the data received from an 

AFM indentation experiment comes from the field of Linear Viscoelasticity.  This field of analysis originally 

used models to explain the experimental results from creep recovery experiments, in which weights were hung 

from the material while its deformation was tracked (Findley et al., 1989).  The primary assumption of Linear 

Viscoelasticity is that the strain response of a material may be constructed from a superposition of simpler 

stress inputs.  Likewise, the stress response may be constructed from a superposition of simpler strain inputs.  

The resulting relationship may be expressed generally as seen in Equation 1, in which an arbitrary number of 

time derivatives of stresses and strains are scaled and equated (Tschoegl, 1989): 

 

∑ 𝑢𝑛

𝑑𝑛𝜎(𝑡)

𝑑𝑡𝑛

𝑁 

𝑛=0

 =  ∑ 𝑞𝑚

𝑑𝑚𝜀(𝑡)

𝑑𝑡𝑚

𝑀

𝑚=0

 (1) 

Such a presentation of the material behavior fundamentally assumes that the stress–strain relationship is 

linear.  One may reformulate the theory to include higher order terms; however, this formulation would require 

a non-linear viscoelastic analysis. 

The resulting behavior of any given linear viscoelastic material may then be determined through the 

solution of the above differential equation.  For mathematical convenience, the solution process is ideally 

executed in the Laplace domain via a Laplace transformation of the differential equation.  This process allows 
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for the increasing order of time differentials to turn into multiplications with an increasing ordered polynomial 

of the frequency variable, s.  The resulting equation in the Laplace domain is the following: 

 

∑ 𝑢𝑛 𝑠𝑛 𝜎(𝑠)

𝑁 

𝑛=0

 =  ∑ 𝑞𝑚  𝑠𝑚 𝜀

𝑀

𝑚=0

(𝑠) (2) 

This equation can then be simplified using operator notation for the polynomials to obtain the following 

expression, in which 𝑢(𝑠) and 𝑞(𝑠) are the Laplace domain polynomials multiplying the transformed stress 

and strain:   

 𝑢(𝑠)  𝜎(𝑠)  =  𝑞(𝑠) 𝜀(𝑠) (3) 

Viewing the resulting equation as a transfer function, one obtains two forms.  In the first form, the stress is 

the output and the strain is the input to a transfer function, Q, denoted as the relaxance of the material (Equation 

4).  In the other form, the strain is the output and the stress is the input.  Its transfer function, U, is called the 

retardance of the material (Equation 5). 

  𝜎(𝑠)  =  𝑞(𝑠) / 𝑢(𝑠)  𝜀(𝑠)  =  𝑄(𝑠) 𝜀(𝑠)  (4) 

                    𝜀(𝑠)  =  𝑢(𝑠) / 𝑞(𝑠) 𝜎(𝑠)  =  𝑈(𝑠) 𝜎(𝑠) (5) 

Importantly, in the frequency space of the Laplace domain, the relaxance and retardance of a material are 

inverses of each other.  This is not generally true in the time domain which is why the Laplace domain is mostly 

used in this analysis. 

To obtain the solution of the material’s stress–strain behavior in the time domain, the above equations may 

be transformed via an inverse Laplace transform.  Of course, as there are two functions multiplied in the 

frequency domain, the relationships turn into convolution integrals in the time domain: 

 
𝜎(𝑡) = ∫ 𝑄(𝑡 − 𝑢)𝜀(𝑢)𝑑𝑢

𝑡

0

  (6) 

 
𝜀(𝑡) = ∫ 𝑈(𝑡 − 𝑢)𝜎(𝑢)𝑑𝑢

𝑡

0

  (7) 

These two equations fall under the superposition principle introduced by Boltzmann, which mathematically 

states that the mechanical behavior at some given time is related to the mechanical state at all previous times 

multiplied by a material function.  It should be emphasized that these integrals are convolution integrals and 

cannot be treated as a normal integration.  The convolution integrals here slide the material functions, either 

the relaxance or retardance, past the mechanical states, stress or strain, and integrate their products at each 

instance of time denoted by the index variable, u.  Such convolutions allow for the contributions of the previous 

states to the current state of a system (Tschoegl, 1989). 

In the special case of Equation 1 where N and M are both equal to 0, the linear elastic stress–strain 

relationship is recovered where the ratio of q and u is the familiar Young’s modulus:   

 𝜎(𝑡) =
𝑞0

𝑢0

𝜀(𝑡) = 𝐸 𝜀(𝑡)  (8) 

From this point, parallels may be drawn between the relaxance, Q, and the stiffness, or modulus, of a 

material as well as the retardance, U, and the inverse of the stiffness, or compliance, of a material.  Such 

designations may serve as helpful reminders when doing any sort of viscoelastic analysis.  Of course, to 

perform useful analyses with Equations 6 and 7, one must obtain forms for the relaxance or retardance of the 

material being analyzed.  Representing the viscoelastic material through mechanical models comprised of 

springs and dashpots (dampers), often referred to as rheological models, serves as a simple and effective 

starting point in obtaining the relaxance or retardance.  

3.2 Viscoelastic Models 

 

3.2.1 Maxwell-Wiechert Model 

The most basic rheological model, the Linear Maxwell model, was proposed by James Maxwell in 1867 

and serves as his only contribution to solid mechanics (Tschoegl, 1989).  It mechanically and mathematically 

represents the literal meaning of viscoelasticity in which the viscoelastic response is comprised of an elastic 

component and a viscous component.  This model consists of an elastic spring element with a stiffness, 𝐺, in 

series with a viscous dashpot element with a viscosity, 𝜂, and is often referred to as a Maxwell Arm (Figure 

5).     
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Figure 5. Linear Maxwell Model or ‘Maxwell Arm’ 

 

While elementary, the Maxwell model allows for the physical recreation of steady-state flow and stress 

relaxation (López-Guerra and Solares, 2014).  For instance, when a step strain is initially applied to the model, 

the damper resists motion proportional to the strain rate – an impulse occurring at the onset of strain.  Due to 

the impulse in force, all the applied strain is accommodated within the spring element which stores an internal 

stress.  After this instant, the damper yields which allows the compressed spring to release its stored energy, 

thus relaxing the internal stress of the material.  Additionally, if the strain is continuously applied, the material 

will continuously and permanently deform, thus replicating steady state flow.  By combining many Maxwell 

arms in parallel with a single spring, 𝐺𝑒 , one obtains the Maxwell-Wiechert model.  A general schematic of the 

Maxwell-Wiechert model is provided in Figure 6.   

 

 

Figure 6. Maxwell-Wiechert Model 

The Maxwell-Wiechert model is capable of recreating the same physics as the Linear Maxwell model with 

the addition of allowing for a mode of deformation recovery through the inclusion of the lone spring, 𝐺𝑒, which 

may often be referred to as the elastic arm, restoring arm, or equilibrium modulus.  Further, the addition of 

multiple arms allows for the inclusion of multiple modes of stress relaxation occurring at different timescales, 

each of which is related to the viscosity of the dashpot and the stiffness of the spring in each arm.  If a Maxwell-

Wiechert model is constructed with a single Maxwell arm and the elastic spring, the resulting model is generally 

referred to as a Standard Linear Solid (SLS) model (Findley et al., 1989).  By removing the elastic arm from a 

multi-arm Maxwell-Wiechert model, one obtains the Burger’s model, which is capable of modeling steady 

state flow with the sacrifice of the recovery behavior (Findley et al., 1989).  The elastic arm, 𝐺𝑒, is thus denoted 

in brackets to indicate its optionality; if included, the model will recover, if not, the model will flow.  The 

mathematical details of such behaviors will be outlined in the following section. 

To derive the behavior of the Maxwell-Wiechert model, it is convenient to begin with the behavior of a 

single Maxwell arm (López-Guerra and Solares, 2014; Uluutku et al., 2021).  The stress–strain relationship of 

the elastic spring element and viscous dashpot element can be written as Equation 9 and 10, respectively: 

 𝜎 = 𝐺𝜖  (9) 

                   
𝜎 = 𝜂

𝑑𝜖

𝑑𝑡
  (10) 
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When these two elements are connected in series, such as they are in a Maxwell arm, they will experience 

the same amount of stress as expressed in Equation 11.  Conversely, the total strain of the Maxwell arm is the 

summation of the strains within the individual elements, as seen in Equation 12. 

                   𝜎 = 𝜎𝑠 = 𝜎𝑑  (11) 

 

                   𝜖 = 𝜖𝑠 + 𝜖𝑑   (12) 

 

By substituting the stress–strain relationships for a spring (Equation 9) and a dashpot (Equation 10) into 

the time derivative of Equation 12, the behavior of a single Maxwell arm can be written as the differential 

equation provided in Equation 13.  A simplification can be made by introducing a new parameter seen in 

Equation 14.  This parameter, referred to as a relaxation time, is defined as the ratio of the viscosity of the arm 

dashpot and the stiffness of the arm spring.  As such, it is a parameter that is specific to the Maxwell arm that 

contains its spring and dashpot.    

 

 
 
𝑑𝜖

𝑑𝑡
=

𝑑𝜖𝑠

𝑑𝑡
+

𝑑𝜖𝑑

𝑑𝑡
=

1

𝐺

𝑑𝜎

𝑑𝑡
+

𝜎

𝜂
  (13) 

                      𝜏 =
𝜂

𝐺
 (14) 

By substituting the relaxation time of the Maxwell arm into its governing differential equation, Equation 

15 is obtained.  Like was done in Equations 1 and 2, the Laplace domain representation of the differential 

stress–strain relationship may provide for more convenient solutions (Equation 16). 

                     𝑑𝜖

𝑑𝑡
=  

1

𝐺

𝑑𝜎

𝑑𝑡
+

𝜎

𝐺𝜏
 (15) 

                                         
𝜖𝑠 =  

𝜎𝑠

𝐺
+

𝜎

𝐺𝜏
= 𝜎(

𝑠

𝐺
+

1

𝐺𝜏
) 

 
(16) 

By rearranging Equation 16 into a transfer function, one obtains the relaxance of the single Maxwell arm 

as seen in Equation 17.  Using this transfer function, which relates the stress and strain of an individual arm, 

one can analyze the behavior of a Maxwell-Weichert model with an arbitrary number of arms, N.  Given that 

the total stress on the model should be equal to the sum of the stresses in each arm, the relaxance of each arm, 

𝑄𝑖 , can be introduced to determine the stress–strain relationship (Equation 18).  Further, given that the strain 

on each arm is equal to the total strain of the model, the strain may be factored out of the sum and the relaxance 

of the entire model may be obtained (Equation 19).  The elastic arm spring, 𝐺𝑒, is included in the equation 

through addition since it is in parallel with the remaining arms. 

                                         
𝑄(𝑠) =  

𝜎

𝜖
= (

𝐺𝜏𝑠

𝜏𝑠 + 1
) (17) 

 

                                         𝜎(𝑠)  = ∑ 𝜎𝑖(𝑠)

𝑁

𝑖

= ∑ 𝜖𝑖(𝑠)𝑄𝑖

𝑁

𝑖

= 𝜖(𝑠) ∑ 𝑄𝑖

𝑁

𝑖

 (18) 

                                         
𝑄(𝑠) =

𝜎

𝜖
 = ∑ 𝑄𝑖

𝑁

𝑖

= {𝐺𝑒} + ∑
𝐺𝑖𝜏𝑖𝑠

1 + 𝜏𝑖  𝑠

𝑁

𝑖

 (19) 

An additional simplification can be made by substituting the sum of the stiffnesses of the springs in the 

optional elastic arm and the remaining arms as in Equation 20.   

 

                                         𝐺𝑔 = {𝐺𝑒}  + ∑ 𝐺𝑖

𝑁

𝑖

 (20) 

This new term, 𝐺𝑔, is the glassy modulus which represents the response of the Maxwell-Wiechert material 

at infinitesimally short stressing times.  Conversely, the elastic arm stiffness, 𝐺𝑒, or the equilibrium modulus, 

represents the response of the material at infinitely long times.  Equation 19 may then be simplified to Equation 

21 in terms of the glassy modulus:   

 

                                         𝑄(𝑠) = 𝐺𝑔 − ∑
𝐺𝑖

1 + 𝜏𝑖  𝑠

𝑁

𝑖

 (21) 

To analytically determine the stress response of a Maxwell-Wiechert material to common strain inputs, all 

that is necessary is to multiply the Laplace domain representation of the desired input with the relaxance 

transfer function for the Maxwell-Wiechert material, and then to take the inverse Laplace transformation of the 

product. 
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3.2.1.1 Response to a Unit Impulse Strain 

 

To replicate the response of a very rapid, impulse-like, indentation, a Dirac delta function may be used as 

a strain input.  Given that the unit impulse, or the Dirac delta function of unit coefficient, is simply 

multiplication with unity in the Laplace domain, the response of a Maxwell model to an impulse strain may be 

found by taking the inverse Laplace transform of the relaxance of the Maxwell model (Equation 22), giving 

the result of Equation 23:   

 

                                         𝑄(𝑠) = 𝐺𝑒 + ∑
𝐺𝑖𝜏𝑖𝑠

1 + 𝜏𝑖  𝑠
=

𝑁

𝑖

𝐺𝑔 − ∑
𝐺𝑖

1 + 𝜏𝑖  𝑠

𝑁

𝑖

 (22) 

 

𝑄𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡) = 𝐺𝑔𝛿(𝑡) − ∑
𝐺𝑖

𝜏𝑖

𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

= (𝐺𝑒 + ∑ 𝐺𝑖

𝑁

𝑖

) 𝛿(𝑡) − ∑
𝐺𝑖

𝜏𝑖

𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

 (23) 

The resulting equation is also termed the relaxance (in this case in the time domain), 𝑄(𝑡), and takes the 

shape of an impulse which occurs at the onset of strain, followed by a series of negative, time decaying 

exponentials.  A plot of the response for an arbitrary, 2-arm Maxwell-Wiechert model is included in Table 1.  

As can be seen, when the material exhibits steady state fluidity (mathematically, meaning that the equilibrium 

modulus is zero), the exclusion of the elastic arm results in the weakening of the stress response of the model, 

which is as expected from a more fluidic material.  This function has a peculiar shape as a result of the Dirac 

delta function and the negative exponentials; however, this function is the result of a non-physical strain 

excitation and is primarily used for calculating the stress with Equation 6, when convolved with a strain 

function. 

 

3.2.1.2 Response to a Unit Step Strain 

 

Replicating the procedure from above, a step input can be applied to the Laplace domain form of the transfer 

function via multiplication with the Laplace domain representation of the step input, 
1

𝑠
:   

 

𝐺𝑠𝑡𝑒𝑝(𝑠) =
1

𝑠
𝑄(𝑠) =

𝐺𝑒

𝑠
+ ∑

𝐺𝑖𝜏𝑖

1 + 𝜏𝑖  𝑠
=

𝑁

𝑖

=
𝐺𝑔

𝑠
− ∑

𝐺𝑖

𝑠 + 𝜏𝑖  𝑠
2

𝑁

𝑖

 (24) 

The result of taking the inverse Laplace transformation of this expression gives the time domain response 

of a Maxwell-Wiechert material to a step input, which is referred to as the relaxation, G:   

 

𝐺𝑠𝑡𝑒𝑝(𝑡) = 𝐺𝑒 + ∑ 𝐺𝑖𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

= 𝐺𝑔 − ∑ 𝐺𝑖  (1 − 𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

) (25) 

At the onset of strain, corresponding to t equal to zero, this expression indicates that the effective relaxation 

of the material is the stiffer glassy modulus, 𝐺𝑔.  At the instant of a specified relaxation time, 𝜏𝑖, the stress in 

arm i will have decayed to 
1

𝑒
 of its original value, where e is the base of the natural logarithm.  After sufficient 

time, the material will relax to an effective relaxation equal to the weaker equilibrium modulus, 𝐺𝑒.  However, 

when the model exhibits steady state flow, the material will continue to creep until it fully relaxes under the 

subjected strain.  This equation may also be interpreted as the time integral of the unit impulse response. 

 

3.2.1.3 Response to a Unit Ramp Strain 

 

In an analogous manner as we proceeded above, the stress response of the model due to a unit ramp strain 

input is obtained by multiplying the relaxance by 
1

𝑠2 or by integrating the unit step response in time, giving the 

result of Equation 26.  If the model exhibits steady state fluidity, the response settles at a constant stress equal 

to the sum of the products of the stiffness and the time constant of each arm.  Otherwise, when the elastic term 

is included, the stress will continue increasing at a rate proportional to the equilibrium modulus. 

 

𝐺𝑟𝑎𝑚𝑝(𝑠) =
1

𝑠2
𝑄(𝑠) =

𝐺𝑔

𝑠2
− ∑

𝐺𝑖

𝑠2 + 𝜏𝑖  𝑠
3

𝑁

𝑖

 (26) 

 

𝐺𝑟𝑎𝑚𝑝(𝑡) = 𝐺𝑒𝑡 + ∑ 𝐺𝑖𝜏𝑛

𝑁

𝑖

(1 −  𝑒
−

𝑡
𝜏𝑖) = 𝐺𝑔𝑡 − ∑ 𝐺𝑖 (𝑡 − 𝜏𝑛 (1 −  𝑒

−
𝑡
𝜏𝑖))

𝑁

𝑖

 (27) 
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Table 1. Maxwell-Weichert Model Standard Inputs and Time Domain Responses 

Strain 

Input 
Time Domain Response 

Time Domain Response 

w/ Steady State Fluidity 
Response Plot 

Impulse 𝐺𝑔𝛿(𝑡) − ∑
𝐺𝑖

𝜏𝑖

𝑒
− 

𝑡
𝜏𝑖

𝑁

𝑖

 ∑ 𝐺𝑖

𝑁

𝑖

(𝛿(𝑡) −
𝑒

− 
𝑡
𝜏𝑖

𝜏𝑖

) 

 

Step 𝐺𝑒 + ∑ 𝐺𝑖𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

 ∑ 𝐺𝑖𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

 

 

Ramp 𝐺𝑒𝑡 + ∑ 𝐺𝑖𝜏𝑛

𝑁

𝑖

(1 −  𝑒
−

𝑡
𝜏𝑖) ∑ 𝐺𝑖𝜏𝑛

𝑁

𝑖

(1 −  𝑒
−

𝑡
𝜏𝑖) 

 
 

3.2.1.4 Response to Harmonic Strains 

 

When the Maxwell-Wiechert material is strained harmonically, the system can be analyzed in the Fourier 

domain by substituting 𝑖𝜔 for the Laplace domain variable, 𝑠, as seen in Equation 28 below. The real and the 

imaginary parts of the harmonic relaxance may be separated in the form shown in Equation 29.   

 

𝑄(𝜔) = 𝐺𝑔 − ∑
𝐺𝑖

1 + 𝑖𝜏𝑖𝜔 

𝑁

𝑖

 (28) 

 𝑄(𝜔) = 𝑄′(𝜔) + 𝑖𝑄′′(𝜔) (29) 

The separated components of the relaxance are referred to as the storage modulus, 𝑄′, and loss modulus, 

𝑄′′, respectively.  As the names might suggest, these quantities determine how much energy storage and energy 

dissipation a material displays at steady state at a given frequency; their exact forms are provided in Table 2 

below (Tschoegl, 1989). 

As the storage and loss moduli define a vector in the complex plane, the phase, or angle, of this vector may 

be calculated through the inverse tangent of the ratio of the loss and storage moduli, as shown in Equation 30.  

This quantity is referred to as the loss angle and the tangent of the loss angle is referred to as the loss tangent, 

which can be seen in Equation 31 (Tschoegl, 1989).   

 



Reports in Mechanical Engineering ISSN: 2683-5894                                                                 166 

 

Reports in Mechanical Engineering, Vol. 2, No. 1, 2021:  156-179. 

 
𝜃(𝜔) = 𝑡𝑎𝑛−1

𝑄′′(𝜔)

𝑄′(𝜔)
 (30) 

 
𝑡𝑎𝑛 𝜃(𝜔) =

𝑄′′(𝜔)

𝑄′(𝜔)
 (31) 

The magnitude of the loss angle depends on the relative energy loss and storage of the material; typically, 

the storage modulus increases with frequency as the molecules have less time to respond with slip-based 

mechanisms and thus, can only respond through bond stretching (i.e., elastically).  Further, the loss modulus 

of a Maxwell-Wiechert material has distribution-like peaks whose centers correspond to the inverse of the 

relaxation times of each arm.  With multiple arms and multiple different relaxation times, the corresponding 

loss modulus would have a number of identifiable peaks.  Additionally, the larger the loss tangent, or the closer 

the loss angle is to 90°, indicates that the material displays increasingly viscous behavior.  Conversely, the 

smaller the loss tangent, or the closer the loss angle is to 0°, indicates that the material displays increasingly 

elastic behavior.  For mostly elastic materials such as ceramics or metals, the loss tangent is typically around 

0.001, and it is close to unity for highly dissipative materials, such as elastomers and biological materials 

(Ferry, 1980; Proksch et al., 2016).  As could be anticipated, when the material exhibits steady state flow, its 

ability to store energy is greatly diminished as the material yields continuously. 

 

3.2.2 Kelvin-Voigt Model 

In practical cases, it may be more convenient to use stress as the input of the material model as opposed to 

strain.  In this case, an analogous model to the Maxwell-Wiechert model may be constructed, but which allows 

for a more convenient strain input analysis.  In the Voigt model, an elastic spring and a viscous dashpot are 

combined in parallel rather than in series, as seen in Figure 7.  The resulting combination allows for the 

modelling of creep and recovery, but is incapable of replicating steady state flow and stress relaxation (Findley 

et al., 1989; Tschoegl, 1989).  When subjected to a step input of stress, the dashpot will slow down the strain 

response of the system.  The dashpot stress weakens as time progresses, until the spring entirely bears the stress 

input – at this final stage, the material has creeped to a resting point.  Once the applied stress is released, the 

energy stored in the spring will slowly restore the material to its original position.  Like the linear Maxwell 

model, the capabilities of the Voigt model may be enhanced by including additional Voigt ‘units’ in series with 

an elastic spring.  The resulting Kelvin-Voigt model can be seen in Figure 8. 

During the application of a stress input to the Kelvin-Voigt model, the stress stored in the lone elastic spring 

may be relaxed through the deformations of the Voigt units in the model.  Thus, the Kelvin-Voigt model, like 

the Maxwell-Weichert model, is capable of modeling creep, recovery, stress relaxation, and steady state flow; 

although the latter is only possible when an optional dashpot is added in series with the model as seen in the 

bracketed dashpot denoted as 𝜑f in Figure 8.  

Similar analytical exercises can be carried out for the Kelvin-Voigt model as for the Maxwell-Wiechert 

model to determine the response of a Kelvin-Voigt material to common stress inputs.  Because of the 

construction of the model, each Voigt unit experiences the same applied stress but responds with different 

internal strains. However, inside of a single Voigt unit, the strain of the spring and the dashpot element are 

equal, meanwhile they will experience different stresses.  The total stress of a single Voigt unit can thus be 

written as the relation in Equation 32: 

 𝜎 = 𝜎𝑠𝑝𝑟𝑖𝑛𝑔 + 𝜎𝑑𝑎𝑠ℎ𝑝𝑜𝑡  (32) 

From here, the stress–strain relationship of a single Voigt unit may be written by substituting the individual 

stress–strain equations for the spring and the dashpot, as seen in Equation 33.  Again, recasting this equation 

into the Laplace domain provides for a more convenient manipulation as seen in Equation 34. 

 𝜎(𝑡) = 𝐺𝜀(𝑡) + 𝜂𝜀′(𝑡) (33) 

 𝜎(𝑠) = 𝐺𝜀(𝑠) + 𝜂𝑠𝜀(𝑠) = 𝜀(𝑠)  × (𝐺 + 𝜂𝑠) (34) 

Factoring out the strain term yields the more concise Equation 35:   

 

 
𝜀(𝑠)  = 𝜎(𝑠)

1

(𝐺 + 𝜂𝑠)
 (35) 
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Table 2. Maxwell-Weichert Model Harmonic Quantities 

Harmonic 

Quantity 
Form Plot 

Storage 

Modulus 
{𝐺𝑒} + ∑ 𝐺𝑖(1 −

1

1 + 𝜏𝑖
2𝜔2

)

𝑁

𝑖

 

 

Loss 

Modulus 
∑

𝐺𝑖𝜔𝜏𝑖

1 + 𝜏𝑖
2𝜔2

𝑁

𝑖

 

 

Loss 

Tangent 

Q′′(ω)

Q′(ω)
 

 
 

 

 
Figure 7. Linear Voigt Model 
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Figure 8. Kelvin-Voigt Model 

With such a formulation, it is customary to exchange the inverse of the spring stiffness, G, for a compliance, 

𝐽, and the inverse of the dashpot viscosity, 𝜂, for a fluidity, 𝜑, where the names are self-explanatory.  The 

mathematical relationships are presented in Equation 36.  Thus, the stress–strain relationship of the single Voigt 

unit may be rewritten in terms of the compliance and fluidity as seen in Equation 37.   

 

 
𝐽 =

1

𝐺
, 𝜑 =

1

𝜂
 (36) 

 
𝜀(𝑠) = 𝜎(𝑠)

1

(
1
𝐽

+
1
𝜑

𝑠)
= 𝜎(𝑠)

𝐽

(1 +
𝐽
𝜑

𝑠)
 (37) 

Similar to the relaxation time of the Maxwell-Wiechert model, a retardation time, 𝜏, may be introduced for 

each Voigt unit, which is defined as the ratio of the compliance of the spring and the fluidity of the dashpot 

within a given Voigt unit, as defined in Equation 38.  Substituting the retardation time into Equation 37 yields 

the simplified relationship provided in Equation 39.   

 

 
𝜏 =

𝐽

𝜑
 (38) 

 
𝜀(𝑠)  = 𝜎(𝑠)

𝐽

(1 + 𝜏𝑠)
 (39) 

As for the Maxwell-Wiechert model, the stress–strain relationship may be rearranged into a transfer 

function with stress as the input and strain as the output.  This resulting transfer function, given in Equation 

40, is referred to as the retardance, U, of a single Voigt unit.  As the retardance is analogous to the inverse of 

the stiffness, the total retardance of a Kelvin-Voigt model may be obtained by directly summing the retardance 

of each Voigt unit in the model as in the sum presented in Equation 41. 

 

 
𝑈𝑢𝑛𝑖𝑡(𝑠) =

𝜀(𝑠)

𝜎(𝑠)
= 𝜎(𝑠)

𝐽

(1 + 𝜏𝑠)
 (40) 

 

𝜀(𝑠)  = 𝜎𝑖(𝑠) ∑ 𝑈𝑖

𝑁

𝑖

 (41) 

Here, 𝑈𝑖 represents the retardance of the ith of N Voigt units in a Kelvin-Voigt material.  Substituting the 

equation for the retardance of each Voigt unit as well as the compliance of the lone elastic spring, 𝐽𝑔, and 

fluidity of the optional steady-state fluidity dashpot, 𝜑, the exact form of the retardance of a Kelvin-Voigt 

material is obtained in Equation 42.  As for the Maxwell-Wiechert model, a substitution can be made as seen 

in Equation 43 where the equilibrium compliance, 𝐽𝑒, is written in terms of the glassy compliance, 𝐽𝑔, and the 

compliances of the springs in each arm, 𝐽𝑖.   

 

 

 

𝑈(𝑠) =
𝜀(𝑠)

𝜎(𝑠)
 = ∑ 𝑈𝑖

𝑁

𝑖

= 𝐽𝑔 + ∑
𝐽𝑖

1 + 𝜏𝑖  𝑠

𝑁

𝑖

+ {
𝜑

𝑠
} (42) 
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𝐽𝑒 = 𝐽𝑔 + ∑ 𝐽𝑖

𝑁

𝑖

 (43) 

Analogous to the equilibrium and glassy moduli of the Maxwell-Wiechert model, the equilibrium 

compliance represents the compliance of the model at infinitely long time scales, and the glassy compliance 

represents the compliance of the model at infinitesimally short time scales.  With this transfer function 

developed in terms of the parameters of the model components, the strain response of a Kelvin-Voigt material 

may be determined for a variety of common stress inputs. 

 

3.2.2.1 Response to a Unit Impulse Stress 

 

To analytically determine the strain response of a Kelvin-Voigt material to an impulse-like stress input, the 

Laplace domain representation of the Dirac delta function is multiplied with the transfer function given by 

Equation 41.  The time domain strain response to this input is also termed the retardance of the material and 

may be determined through taking the inverse Laplace transform of Equation 44, giving the result of Equation 

45.   

 

𝑈(𝑠) = 𝐽𝑔 + ∑
𝐽𝑖

1 + 𝜏𝑖  𝑠

𝑁

𝑖

+ {
𝜑

𝑠
} (44) 

 

𝑈𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡) = 𝐽𝑔𝛿(𝑡) + ∑
𝐽𝑖

𝜏𝑖

𝑒
−

𝑡
𝜏𝑖

𝑁

𝑖

+ {𝜑} (45) 

Analogous to the Maxwell-Wiechert model, the impulse response is typically used in conjunction with 

Equation 7 to determine the strain response of a model to a more complicated stress function.  A plot of the 

impulse response of the material in the time domain is included in Table 3.  As can be seen, by including the 

fluidity dashpot, the material becomes much more compliant, as denoted by the offset between the two curves.  

This offset is associated with the permanent deformation of the lone dashpot. 

 

3.2.2.2 Response to a Unit Step Stress 

 

The response due to a step input of stress may be determined in a similar manner.  This scenario might 

represent the classic creep experiment in which a weight is applied to a sample and the strain is tracked through 

time.  To do this, the transfer function is multiplied by the Laplace domain representation of the step function, 
1

𝑠
, as shown in Equation 46.  Mathematically, this could also be performed by integrating the impulse response 

seen in Equation 45 over time.  Either way yields the retardation of the material which is given in Equation 47.   

 

𝐽𝑠𝑡𝑒𝑝(𝑠) =
1

𝑠
𝑈(𝑠) =

𝐽𝑔

𝑠
+ ∑

𝐽𝑖

𝑠 + 𝜏𝑖  𝑠
2

𝑁

𝑖

+ {
𝜑

𝑠2
} (46) 

 

𝐽𝑠𝑡𝑒𝑝(𝑡) = 𝐽𝑔 + ∑ 𝐽𝑖 (1 − 𝑒
−

𝑡
𝜏𝑖)

𝑁

𝑖

 +  {𝜑 𝑡} (47) 

Under the step strain input with no steady state flow, the material will slowly creep to the equilibrium 

compliance, 𝐽𝑒.  However, when the fluidity dashpot is included in the model, the material will continuously 

yield at a rate proportional to the fluidity of the lone dashpot.  These responses are included in the right-hand 

plot in Table 3. 

 

3.2.2.3 Response to a Unit Ramp Stress 

 

The ramp stress input may represent an idealized AFM force–distance experiment when the deflection of 

the cantilever is linear.  The strain response of a Kelvin-Voigt material to such a condition is determined 

through multiplication of the transfer function seen in Equation 42 with the Laplace domain representation of 

a ramp signal, 
1

𝑠2 (Equation 48), or through the integration of the step response in time as seen in Equation 49.   

 

𝐽𝑟𝑎𝑚𝑝(𝑠) =
1

𝑠2
𝑈(𝑠) =

𝐽𝑔

𝑠2
+ ∑

𝐽𝑖

𝑠2 + 𝜏𝑖  𝑠
3

𝑁

𝑖

+ {
𝜑

𝑠3
} (48) 

 

𝐽𝑟𝑎𝑚𝑝(𝑡) = 𝐽𝑔𝑡 + ∑ 𝐽𝑖 (𝜏𝑖𝑒
−

𝑡
𝜏𝑖 − 𝜏𝑖 + 𝑡)

𝑁

𝑖

 +  {
𝜑

2
𝑡2} (49) 
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As seen in the response plot in Table 3, the Kelvin-Voigt material will continuously yield under the 

consistently increasing ramp stress.  When the material exhibits steady state fluidity, the material simply yields 

at a higher rate. 

 

Table 3. Kelvin-Voigt Model Standard Inputs and Time Domain Responses 

Stress 

Input 
Time Domain Response 

Time Domain Response w/ 

Steady State Fluidity 
Response Plot 

Impulse Jgδ(t)  + ∑
Ji

τi

e
−

t
τi

N

i

 Jgδ(t)  + ∑
Ji

τi

e
−

t
τi

N

i

+ φ 

 

Step Jg + ∑ Ji (1 − e
−

t
τi)

N

i

 Jg + ∑ Ji (1 − e
−

t
τi)

N

i

 +  φ t 

 

Ramp Jgt + ∑ Ji (τie
−

t
τi − τi + t)

N

i

 
Jgt + ∑ Ji (τie

−
t

τi − τi + t)

N

i

 

+  
φ

2
t2 

 
 

 

3.2.2.4 Response to Harmonic Stresses 

 

The response of a Kelvin-Voigt material under steady-state harmonically oscillating stresses can be easily 

determined by evaluating the transfer function when the Laplace domain variable, 𝑠, is equal to 𝑖𝜔, as done 

with the Maxwell-Wiechert model.  This Fourier domain representation of the retardance, seen in Equation 50, 

can then be separated into real and imaginary components, which yields the storage compliance and loss 

compliance, respectively, as given in Equation 51.   

 

𝑈(𝜔) = 𝐽𝑔 + ∑
𝐽𝑖

1 + 𝑖𝜏𝑖𝜔

𝑁

𝑖

− {𝑖
𝜑

𝜔
} (50) 

   

 𝑈(𝜔) = 𝑈′(𝜔) − 𝑖𝑈′′(𝜔) (51) 
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The exact forms of the storage and loss compliance can be found in Table 4.  As was claimed in the 

Maxwell-Wiechert model derivation, the storage compliance is a measure of the energy stored in the material, 

while the loss compliance is a measure of the energy that is lost in the material.  The loss compliance for a 

Maxwell-Wiechert model displays distribution-like peaks with their centers located at the inverse of the 

retardation time, 
1

𝜏
, of each unit.  Additionally, the angle between the storage and loss compliance is again 

denoted as the loss angle with the tangent of the loss angle being referred to as the loss tangent, given in 

Equations 52 and 53.  These two quantities determine the degree to which the strain response is elastic or 

viscous, corresponding to small and large loss tangents, respectively.  Unsurprisingly, when the material 

exhibits steady state fluidity, the loss compliance always increases by an offset that is proportional to the 

fluidity of the lone dashpot. 

 
𝜃(𝜔) = 𝑡𝑎𝑛−1

𝑈′′(𝜔)

𝑈′(𝜔)
 (52) 

 
𝑡𝑎𝑛 𝜃(𝜔) =

𝑈′′(𝜔)

𝑈′(𝜔)
 (53) 

3.2.3 Power Law Rheology 

While the Maxwell-Wiechert and Kelvin-Voigt material models are capable of recreating the many 

complex phenomena seen in linear viscoelastic solid mechanics, the number of arms may seem to be an 

arbitrary constant which could be justified through a number of ways.  In some cases, it may be preferred to 

determine the same model behaviors when the there are an infinite number of arms in each model.  In this case, 

an integration may be performed over the relaxation or retardation time variables, while treating the stiffness 

or compliance of the springs as a spectra, as described in Equation 54 (Efremov et al., 2020; Findley et al., 

1989; Tschoegl, 1989).   

 

𝜖𝑠𝑡𝑒𝑝 = 𝜎𝑠𝑡𝑒𝑝 [𝐽𝑔 + ∑ 𝐽𝑛(1 − 𝑒
−

𝑡
𝜏𝑛)

∞

𝑛=0

] ≅ 𝜎0 [𝐽𝑔 + ∫ 𝐽(𝜏)(1 − 𝑒−
𝑡
𝜏)

∞

0

𝑑𝜏] (54) 

Without knowing the shape of the relaxation or retardation spectra, an assumption of the time dependent 

material behavior is necessary to determine the shape of the relevant spectra of a material.  In this case, it has 

been empirically observed that the stress–strain behavior of many materials follows a power law shape in their 

creep relaxation and retardation behavior, as per Equation 55 (Findley et al., 1989; Tschoegl, 1989).  In this 

equation, the step response is modelled by a constant offset followed by a time dependent transient response 

dictated by the arbitrary exponent, n, which is a material parameter that is independent of temperature and 

generally less than 1.   

 𝜖𝑠𝑡𝑒𝑝(𝑡) = 𝜖 + 𝜖+𝑡𝑛, 𝜎𝑠𝑡𝑒𝑝(𝑡) = 𝜎 + 𝜎+𝑡𝑛 (55) 

By setting the integral relationship in Equation 54 equal to the power law relationship in Equation 55, the 

retardation spectra may be determined.  Of course, the integral in Equation 54 converges conditional to the 

selection of the retardation spectra.  Specifically, when 𝐽(𝜏) is chosen to be equal to that of Equation 56, the 

empirically observed Power Law Rheology (PLR) behaviors seen in Equation 55 may be obtained. 

 
𝐽(𝜏) =

𝑛𝑚𝜏𝑛−1

𝛤(1 − 𝑛)
 (56) 

The storage and loss compliances of this model may be calculated by taking a Fourier transform of equation 

56 and taking the derivative with respect to time (hence multiplying by iω in the Fourier domain) as seen in 

Equations 57 and 58, in which k is an integer (Findley et al., 1989).  Note that these relationships are only 

obtained by taking the retardation spectra presented in Equation 56.   

 𝑈′(𝜔) = 𝐽𝑔 + 𝐽+𝛤(𝑛 + 1)𝜔−𝑛 𝑐𝑜𝑠(
𝑛𝜋

2
+ 2𝑘𝑛𝜋) (57) 

 𝑈′′(𝜔) = 𝐽+𝛤(𝑛 + 1)𝜔−𝑛 𝑠𝑖𝑛(
𝑛𝜋

2
+ 2𝑘𝑛𝜋) (58) 

With different spectra, different power law stress–strain relationships or even non-power-law relationships 

may be obtained (Tschoegl, 1989).  Additionally, the derivation of such relationships could be equivalently 

done for Maxwell-Wiechert models.    Recently, the modified power law relaxation modulis in Equation 59 

has gained popularity in the description of biological materials (Efremov et al., 2020).  The modified power 

law is desirable as it avoids the mathematical singularities of more basic power laws which occur at the onset 

of strain (WILLIAMS, 1964).  Additional power law relationships may be derived by replacing elements of 

either the Maxwell or Voigt models with fractional viscoelastic elements whose stress behavior depends on a 

fractional time derivative of the strain (Bonfanti et al., 2020).   
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𝐺𝑠𝑡𝑒𝑝 = 𝐺𝑔 (1 +

𝑡

𝜏0

)
−𝑛

 (59) 

Table 4. Kelvin-Voigt Model Harmonic Quantities 

Harmonic 

Quantity 
Form Plot 

Storage 

Compliance 
Jg + ∑

Jn

1 + τn
2ω2

n

 

 

Loss 

Compliance 
∑

Jnωτn

1 + τn
2ω2

n

+ {
φ

ω
} 

 

Loss 

Tangent 

U′′(ω)

U′(ω)
 

 
 

3.3 Utilizing Viscoelastic Models 

Once a desired viscoelastic model has been selected to represent the behavior of a given material, the 

material’s response to an arbitrary, time-dependent stress or strain can be calculated from the desired form of 

the relaxance or retardance, as outlined above.  As already stated, the relaxance or retardance can be convolved 

with the arbitrary, time-dependent strain or stress as per the Boltzmann superposition principle stated in 

Equations 6 and 7.  In essence, this way of modeling the material response imposes the unit stress or strain 

input on the material at every instant throughout its time-dependent stress or strain excitation.  For instance, 

when using the relaxance, or the stress response of a strain impulse, the resulting strain function is 

mathematically constructed by a continuous set of strain impulses.  Likewise, the resulting stress function is 
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constructed from a continuous set of stress responses from each strain impulse (Tschoegl, 1989).  Thus, the 

linear nature of linear viscoelasticity again becomes apparent.  Although these mechanical descriptions can 

recreate the complex stress–strain dynamics of viscoelastic materials, it is often experimentally inconvenient 

to make calculations with the stress and strain of the material.  This inconvenience becomes exceptionally 

relevant in the case of the analysis of data obtained through an AFM experiment, where the strain calculation 

may be ambiguous and the determination of the surface area used for calculating the stress becomes 

exceedingly difficult to resolve.  To extend the usefulness of the previously outlined theories, the stress–strain 

relationship needs to be recast in consideration of the contact mechanics of typical AFM experiments. 

4. Contact Mechanics 

4.1 Hertzian Contact Models 

The Hertzian Contact theory is the most commonly used contact model for elastic bodies in contact 

(Johnson, 1982, 1985).  The elastic contact between an AFM tip and the surface of a sample is commonly 

modeled using a Hertzian contact model, in which the tip and the sample are modeled as a sphere, cone, or 

circular flat punch interacting with a flat surface, depending on the type of AFM tip chosen for the experiment 

(Eaton and West, 2010; Morris et al., 2009).  The observables in the contact mechanical description of the 

indentation of the tip into the surface are the force and indentation depth, rather than the stress and strain.  

Additionally, considerations of the geometry of the tip are factored in through the radius of curvature (𝑟), angle 

of separation (𝜃), and the radius of the circular face (𝑅) in the cases for a spherical, conical, and flat punch tips, 

respectively (see Table 5).  Further, the reduced elastic modulus of the sample is used to simplify the resulting 

equations as expressed in Equation 60.  The use of this reduced elastic modulus requires the assumption that 

the material in the tip is significantly stiffer than the sample, which works well when measuring softer materials 

with stiffer AFM tips.  The resulting force–indentation relationships are provided in Table 5. 

 1

𝐸∗
=

1 − 𝜈1
2

𝐸1

 (60) 

By using these forms of the Hertzian contact models for analyzing the mechanics of an elastic sample, it is 

again required that the tip be significantly stiffer than the sample, the strains are small, the contact area is small 

relative to the sample, the sample thickness is large enough compared to the indentation so as to be considered 

infinite, and the contact region is free from friction effects (Eaton and West, 2010).  In recent work, it has been 

shown that in small samples, such as individual cells, the assumption of infinite sample thickness may introduce 

large numerical errors when analyzing the mechanical properties of a sample (Garcia and Garcia, 2018). 

4.2 Viscoelastic Contact Models 

 To extend the usefulness of the Hertzian contact models from elastic materials to viscoelastic 

materials, one may start with the generalized form of the Hertzian pressure distribution as seen in Equation 61 

in which, 𝑓(𝛽, 𝑡) is a function that describes the depth of indentation as a function of time and tip geometry 

(Garcia et al., 2020).  The constant 𝛼 represents a geometry dependent constant which scales the pressure–

indentation relationship and has been included as part of the equations in Table 5 and explicitly written in Table 

6. 

 𝑝(𝑡) = 𝛼 𝐸 𝑓(𝛽, 𝑡) (61) 

As was done when initially deriving the relaxance and retardance of the Maxwell-Wiechert and Kelvin-

Voigt models, the Laplace transform of the equation may be taken to result in more convenient manipulations 

as seen in Equation 62.   

 𝑝(𝑠) = 𝛼 𝐸 𝑓(𝛽, 𝑠) (62) 

The developers of the theory of viscoelastic contact, Lee and Radok, argue that the Young’s modulus, 𝐸, 

of the material could be equivalently substituted by its viscoelastic analogue, the relaxance, 𝑄(𝑠), as seen in 

between Equations 62 and 63 (Lee and Radok, 1960; Tschoegl, 1989).  Integrating this pressure distribution 

over the contact region yields an equivalent expression for the force as a function of the indentation, tip 

geometry, and relaxance of the material as seen in Equation 64.  

 𝑝(𝑠) = 𝛼 𝑄(𝑠) 𝑓(𝛽, 𝑠) (63) 

 𝐹(𝑠) = 𝛼 𝑄(𝑠) 𝑓′(𝛽, 𝑠) (64) 

 

 

Table 5. Elastic Hertzian Contact Models for Typical AFM Geometries 
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Tip Shape Contact Model System Diagram 

Sphere 𝐹 =
4

3
𝐸∗√𝑟 ℎ3  

 

Cone 𝐹 =
2

𝜋
𝐸∗

ℎ2

tan (𝜃)
 

 

Flat-Punch 𝐹 = 2 𝑅 𝐸∗ ℎ 

 
 

From this point, the force equation may be equivalently reformulated to express the indentation as a function 

of force, tip geometry, and the retardance of the material.  By taking the inverse Laplace transformation of the 

expression for force or indentation, the time domain solutions of the force–indentation relationships are 

obtained (Lee and Radok, 1960; Tschoegl, 1989).  Equations 65 and 66 display these relationships in which 

the indentation, h, has been properly substituted: 

 
𝐹(𝑡) =  𝛼 ∫ 𝑄𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡 −  𝑢) ℎ𝛽(𝑢) 𝑑𝑢

𝑡𝑓

0

 (65) 

 
ℎ𝛽(𝑡) =  

1

𝛼 
∫ 𝑈𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡 −  𝑢) 𝐹(𝑢)𝑑𝑢

𝑡𝑓

0

 (66) 

The resulting viscoelastic contact models from Lee’s and Radok’s derivation require that the deformation 

be small relative to the contact area and that the force monotonically increase (Garcia, 2020; Garcia et al., 

2020; Lee and Radok, 1960).  The latter assumption has been investigated to extend the theory to include the 

unloading regime and it has been shown that the error is small, especially in the case when the unloading is 

relatively fast (Cheng and Cheng, 2005; Greenwood, 2010).  More mathematically valid for the case of non-

monotonically increasing force is the Ting model provided in Equation 67.  This model convolves the 

relaxation (step response of a Maxwell-Wiechert material) and the derivative of the scaled indentation which 

allows for the analysis of forces which increase and subsequently decrease after a single maximum (Garcia et 

al., 2020; Ting, 1966, 1968).  As a word of precaution, Equation 67 may provide inaccurate results when used 

with experimental data with excessive noise due to the numerical derivative of the indentation. 

 
𝐹(𝑡) =  𝛼 ∫ 𝐺𝑠𝑡𝑒𝑝(𝑡 −  𝑢)

𝑑 ℎ𝛽(𝑢)

𝑑𝑢
 𝑑𝑢

𝑡𝑓

0

 (67) 
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Table 6. Viscoelastic Contact Model Parameters for Typical AFM Geometries 

 

The above equations are similar in form to the Boltzmann superposition integral in that they contain a 

convolution between a material function, either the relaxance, retardance, or relaxation, and a material 

observable, either the indentation or the force.  It should be reiterated that this is not a normal integral operator, 

and therefore treating it as such will not give correct results.  In a computational scheme, numerical convolution 

operations should be performed.  Further, depending on the choice of equation, either the time domain form of 

the material’s relaxance, 𝑄(𝑡), retardance, 𝑈(𝑡), or relaxation, 𝐸(𝑡) should be used in the convolution.  While 

a variety of forms of relaxances, relaxations, retardances, and retardations have been provided in Tables 1 and 

3 as well as Equation 59, if one were to obtain alternate expressions for these material functions, the viscoelastic 

contact mechanical descriptions presented in Table 6 may still be used in the same way. 

5. Mapping AFM Experiments to Theory 

One of the more useful applications of the contact mechanical descriptions is in the analysis of force–

distance curves obtained from AFM measurements.  Such an analysis, often referred to as the “inversion” of a 

force curve, enables AFM users to obtain the viscoelastic parameters which best describe the material being 

studied, and is described in detail elsewhere (López-Guerra and Solares, 2017; Parvini et al., 2020).  The 

inversion involves fitting a contact mechanical model of the desired viscoelastic material model to the 

experimentally obtained force distance curves (López-Guerra et al., 2017).  Generally, fits are performed 

Tip Shape 𝛼 𝛽 System Diagram 
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3 (1 −  𝜐2)
  

3

2
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𝜋(1 − 𝜐2)
 2 

 

Flat-Punch 
2 R

(1 −  𝜐2)
 1 

 



Reports in Mechanical Engineering ISSN: 2683-5894                                                                 176 

 

Reports in Mechanical Engineering, Vol. 2, No. 1, 2021:  156-179. 

through the minimization of a specific objective function, such as the mean squared error or sum of squared 

errors.  An example of the sum of squared errors objective function for a Kelvin-Voigt material is given in 

Equation 68 below.  Here, the indentation, ℎ𝐴𝐹𝑀 , and force, 𝐹AFM, obtained from an AFM experiments are 

used.   

 

𝑆𝑆𝐸 = ∑(𝛼 ∫ 𝑈𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡 − 𝑢) 𝐹𝐴𝐹𝑀(𝑢)𝑑𝑢
𝑡

0

 −  ℎ𝐴𝐹𝑀
𝛽

(𝑡))2

𝑡𝑓

0

 (68) 

Of course, one could also perform a convolution of the retardance with the force curve to obtain a 

‘prediction’ of the scaled, experimental indentation, ℎAFM
𝛽

.  The difference between this ‘predicted’ scaled 

indentation and the actual scaled indentation is then summed to determine the total error for a given set of 

Kelvin-Voigt material parameters such as N, 𝐽𝑔, 𝐽𝑖, and τi (López-Guerra et al., 2017).  The large number of 

degrees of freedom in this fit tends to make the process of fitting and obtaining a mechanically meaningful 

parameter set very difficult.  It is also difficult to interpret and determine which parameter sets are mechanically 

meaningful.  For this reason, it is common to use power law representations such as that in Equation 59 as they 

tend to fit AFM data better in some cases (Efremov et al., 2020).  Additional care should be taken when using 

material functions that include Dirac delta functions such as those seen in the relaxance for the Maxwell-

Wiechert model and the retardance for the Kelvin-Voigt model.  In these instances, the integrand of the 

convolution should be simplified as much as possible with the intention of analytically evaluating any delta 

functions that may be present.  Such an example is given for the Maxwell-Wiechert step response in Equation 

69. 

 

 𝐹(𝑡)

𝛼
= ∫  (𝐺𝑔𝛿(𝑡 − 𝑢) − ∑

𝐺𝑖

𝜏𝑖

𝑒
− 

𝑡−𝑢
𝜏𝑖

𝑁

𝑖

 )ℎ𝛽(𝑢) 𝑑𝑢
𝑡𝑓

0

=

=  𝐺𝑔ℎ𝛽(𝑡) −  ∫  ∑
𝐺𝑖

𝜏𝑖

𝑒
− 

𝑡−𝑢
𝜏𝑖

𝑁

𝑖

 ℎ𝛽(𝑢) 𝑑𝑢
𝑡𝑓

0

 

(69) 

Furthermore, numerical convolution schemes should be used to handle the convolution integrals rather than 

normal numerical integration schemes – doing the latter would result in inaccuracies that may not obviously 

manifest themselves.  Lastly, one should always consider restricting any possible time constants of any material 

models used to be above the experimental sampling frequency, as well as under the experiment duration.  

Obtaining and citing any time constants, such as the relaxation time, that are outside of these bounds would be 

an extrapolation of the experimental data rather than an observational quantity. 

 

6. Model-Free Viscoelasticity 

 

Recent developments have allowed the viscoelastic contact mechanics equations to be used without a 

specific material model when analyzing experimental data (Uluutku et al., 2021).  This approach requires the 

use of a frequency domain technique like the Laplace or Fourier transforms used in analyzing the previously 

discussed viscoelasticity models.  By recasting the experimental data in a frequency domain, the relaxance, 

relaxation, retardance, or retardation may be directly obtained.  Of course, the storage and loss behaviors of a 

material may be obtained through Fourier transformations of data from harmonic, steady-state experiments.  

However, when used for a non-harmonic, and non-bounded functions such as those present in force–distance 

experiments, Fourier techniques give faulty results and do not correspond the analytical theory (Aspden, 1991; 

Uluutku et al., 2021).  This mismatch can be said to be caused by the un-bounded nature of the signals and 

finite bandwidth of the experiments.  To avoid the limitations of discrete Fourier techniques, it has recently 

been proposed to use the ‘discrete Laplace transform,’ known as the Z-Transform, to analyze experimental 

data (Oppenheim and Schafer, 1975; Uluutku et al., 2021).  By using the Z- and modified Fourier transforms, 

one can directly access the storage and loss behaviors of a material.  The Z-Transform of a discrete signal, f, 

may be obtained through Equation 70:  

 𝑍{𝑓[𝑛]} =  𝐹(𝑧) = ∑ 𝑓[𝑛]𝑧−𝑛

𝑛

 (70) 

Using this ‘discrete Laplace transform’ the contact mechanics models presented in Equations 65, 66, and 

67 may be transformed into a discrete form of Equation 64, as expressed in Equation 71.   

 

 
𝑄(𝑧) =

1

𝛼

𝐹(𝑧)

𝑍{ℎ𝛽}
 (71) 
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This Laplace domain representation may be manipulated to directly obtain either the relaxance, relaxation, 

retardance, or retardation for a given force curve, using the force, F, and the indentation, h, as input.  The 

discrete modified Fourier transform of the same signal, f, from Equation 70 may be determined by evaluating 

the Z-Transform at 𝑧 = 𝑒𝛽𝑜𝑒𝑖𝜃 in the range of 𝜃 between 0 and 2𝜋, as in Equation 72.  By performing this 

discrete modified Fourier transformation to the contact mechanics models, the resulting relationship may be 

manipulated like before to obtain Equation 73.   

 𝐹{𝑓[𝑛], 𝛽0} =  𝐹(𝑖𝜔, 𝛽0) = 𝐹𝐹𝑇(𝑓[𝑛]𝑒−𝛽0𝑛) (72) 

 
𝑄(𝑖𝜔, 𝛽𝑜) =

1

𝛼

𝐹(𝑖𝜔, 𝛽𝑜)

𝐹{ℎ𝛽}
 (73) 

Separating the real and imaginary components of the resulting material function yields the storage and loss 

behaviors of the given material.  It has been determined that when this discrete result is compared to that of a 

Kelvin-Voigt and Maxwell-Wiechert models, the modified storage and loss behaviors have similar shapes to 

the analytical models in terms of the locations of the characteristic times; however, the modified storage and 

loss behaviors tend to be more spread across the frequency axis by a factor depending on the experimental 

sampling and 𝛽0.  This is discussed in detail elsewhere (Uluutku et al., 2021). 

The power of such an approach may be better appreciated when compared to the results of the inversion of 

force curves.  By fitting the contact mechanics models to AFM data, a margin of error is incorporated into the 

resulting viscoelastic parameters.  Additionally, when using the Kelvin-Voigt or Maxwell-Wiechert models it 

is often a difficult task to determine whether a set of parameters is mechanically meaningful or not.  By using 

the Z-Transform approach, the material function of a material is directly obtained without having to assume 

that it follows the behavior of a specific model and without the use of a fitting algorithm (Uluutku et al., 2021).  

Therefore, viscoelastic material behaviors may be very accurately obtained through the use of both Z- and 

discrete modified Fourier transforms. 
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