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 The simplest frequency formulation for conservative oscillators was proposed 

in 2019 (Results Phys 2019;15:102546). However, it becomes invalid for non-

conservative oscillators. This work suggests the simplest amplitude-period 

formulation for non-conservative oscillators. The existence of a periodic 

solution of a second-order ordinary differential equation is given, and the 

periodic orbits are easily obtained. To the best of the authors’ knowledge, such 

a powerful result is not available in the literature, providing a tool to 

determining periodic orbits/limit cycles in the most general scenario. 
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1. Introduction 

Oscillations are an important aspect of dynamic behavior encountered in various fields. Every dynamic 

system exhibits oscillations of some kind. The most intuitive and obvious oscillations are in the field of 

mechanics, but they are also regularly encountered in other fields, such as electromagnetism, logistics (stock), 

economy (business cycles), biology (population cycles) – to name but a few of them. Proper mathematical 

description and characterization of oscillations are therefore of utmost importance.  

This work is focused on mechanical oscillations. Oscillation in mechanics implies a repetitive motion, 

usually about some central position, which is denoted as the point of equilibrium. Consideration of mechanical 

oscillations ranges from rather simple single mass undamped free oscillations (Xiao et al., 2011) up to the 

damped and forced oscillations of complex mechanical structures with an enormously large number of degrees 

of freedom (Ma et al., 2010; Devillanova et al., 2016; Ghorbaniparvar et al., 2017). Modal analysis (Aoyama 

et al., 2019; Favarelliet al., 2021) is one of the most important engineering analyses. As a result, it delivers 

eigenfrequencies and eigenmodes of complex structures, which are needed to characterize the structural 

dynamics. Comparison between experimental and numerical modal analysis based on the Finite Element 

Method (FEM) is used on regular basis to check the quality of FE models and perform FE model updating 

(Tigh Kuchak et al., 2019; Kuchak et al., 2021). Furthermore, all real structures are non-conservative systems 

as damping is an inevitable part of their dynamic behavior that gives rise to energy dissipation. But in most 
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cases, modal analysis of engineering structures is performed considering undamped systems. By neglecting 

damping, the accuracy of the obtained results is jeopardized. Despite of that fact, quite often engineers accept 

such a result in order to have a highly efficient simulation. The reason is in the fact that inclusion of damping 

in such an analysis would produce results in form of complex numbers, which is not only computationally 

more tedious, but also more difficult to interpret.  

On the other hand, as already emphasized, in reality it is dealt with non-conservative systems and, therefore, 

it would be crucial to have a mathematical apparatus that can be used to characterize the non-conservative 

systems in an efficient manner. In 2019, Ji-Huan He (2019) suggested the simplest amplitude-frequency 

formula for conservative oscillators. The main purpose of this communication is to give a new amplitude-

frequency’s formulas for non-conservative oscillators (Gelfand & Fomin, 1963; De Brujin, 2010). The 

existence of the first computable integrals for periodic orbits was suggested (García, 2019), and the application 

to the case reported by Mickens (2006) is the initial key to develop a general amplitude-frequency formula for 

non-conservative oscillators. To the best of the authors’ knowledge, no other available formula can be found 

in literature. 

2. Amplitude-period formula  

The main purpose of this communication is the improvement of the main theorem reported in García (2019), 

removing a condition along with the proof’s simplification and presenting a new amplitude-frequency’s 

formula for non-conservative oscillators.  

Theorem 1. A second order ODE: ẍ(t) = f(x(t), ẋ(t)), f: ℝ × ℝ → ℝ,  possesses a periodic 

orbit:{x(0) = A ∈ ℝ+, x(T) = A, ẋ(0) = 0}, if and only if there exists a function ẋ(t) = ϕ(x) ∈ ℂ1(ℝ), such 

that: 
dϕ(x)

dx
=

f(x,ϕ(x))

ϕ(x)
, ϕ(A) = 0. 

Proof . We first prove its necessity. 

If there exists ẋ(t) = ϕ(x) ∈ ℂ1(ℝ), such that: 
dϕ(x)

dx
=

f(x,ϕ(x))

ϕ(x)
, ϕ(A) = 0, then: ẍ(t) = f(x(t), ϕ(x)). This 

new ODE is in fact a conservative oscillator (see for instance (Mickens, 2010)). 

Now we prove its sufficiency. Performing an asymptotic expansion for ẍ(t) = f(x(t), ẋ(t)), using an 

arbitrary bounded function ζ ∈ ℂ(ℝ1): 

 

f(x, ẋ)~f(x + η ∙ ζ, ẋ + η ∙ ζ̇) +
∂f(x, ẋ)

∂x
|
{x+η∙ζ,x+η∙ζ̇}

∙ [x − (x + η ∙ ζ)] +
∂f(x, ẋ)

∂ẋ
|
{x+η∙ζ,x+η∙ζ̇}

∙ [ẋ − (ẋ + η ∙ ζ̇)], (η → 0) 
Integrating and taking into account the periodic orbits’ hypothesis: 

∫ f(x, ẋ) ∙ dt
T

0

= 0~∫ f(x + η ∙ ζ, ẋ + η ∙ ζ̇) ∙ dt
T

0

+∫
∂f(x, ẋ)

∂x
|
{x+η∙ζ,x+η∙ζ̇}

∙ [x − (x + η ∙ ζ)] ∙ dt
T

0

+∫
∂f(x, ẋ)

∂ẋ
|
{x+η∙ζ,x+η∙ζ̇}

∙ [ẋ − (ẋ + η ∙ ζ̇)] ∙ dt
T

0

 

= 0, (η → 0) 
Equivalently: 

∫ η ∙ ζ(t) ∙ [
d

dt
(
∂f(x, ẋ)

∂ẋ
) +

∂f(x, ẋ)

∂x
]

T

0

= 0, (η → 0) 

Applying the fundamental lemma of calculus of variations for a test function η ∙ ζ(t) (see for instance 

(Landau & Lifshitz, 1982), page 9): 

d

dt
(
∂f(x, ẋ)

∂ẋ
) +

∂f(x, ẋ)

∂x
= 0 

This equation is a necessary condition for the first variation of the following functional: 

minx(t)∈ℝ∫ f(σ, σ̇) ∙ dσ
t

0⏟        
J

such that:

{
ẍ = f(x, ẋ)

x(0) = A
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In summary, the first variation δJ = 0 for every periodic trajectory {x = ξ1(t, A, ẋ(0)), ẋ = ξ2(t, A, ẋ(0))} 
of ẍ(t) = f(x, ẋ), i.e.:   

∂

∂ẋ(0)
∫ f(ξ1(σ, A, ẋ(0)), ξ2(σ, A, ẋ(0))) ∙ dσ
T

0

= 0, ∀t ∈ [0, T] 

Then: 
∂

∂ẋ(0)
f(ξ1(σ, A, ẋ(0)), ξ2(σ, A, ẋ(0))) = 0, ∀t ∈ [0, T] 

This conclusion shows that actually: f(x, ẋ) = f(x), in other words, it is a conservative oscillator with 

ϕ(x) ∈ ℂ1(ℝ), such that: ẋ(t) = ϕ(x(t)). This completes the proof. 

Finally, specializing this result to oscillators: ẍ = f1(x) ∙ f2(ẋ), we have the following corollary.  

Corollary 1: A second order ODE: ẍ(t) = f(x(t), ẋ(t)), f: ℝ × ℝ → ℝ, possesses a periodic orbit: 
{x(0) = A ∈ ℝ+, x(T) = A, ẋ(0) = 0}, with an amplitude-period formula:  

{
 
 

 
 ∫

ϕ

f2(ϕ)
∙ dϕ = ∫ f1(x) ∙ dx

x

A

ϕ(x)

0

T = 4 ∙ ∫
1

ϕ(x)
∙ dx

A

0

 

Applying the corollary to Mickens’ oscillator: ẍ = −x ∙ (1 + ẋ2), we have 

 

∫
ϕ

1 + ϕ2
∙ dϕ = ∫ (−x)dx

x

A

ϕ(x)

0

 

and  

ϕ = √eA
2−x2 − 1 

The amplitude-period relationship is obtained as follows 

T = 4 ∙ ∫
dx

√eA
2−x2 − 1

A

0

 

Notice that this formula, is not more than the exact amplitude-frequency formula obtained in (Mickens, 

2006). 

Fig.1 shows the accuracy of the approximate solution.  
 

 

(a) 
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(b) 

 

(c)  

 

(d) 
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(e) 

Figure 1. Comparison of the exact solution (continuous blue line) and the approximate one (red 

line with dots): (a) A=1; (b) A=1.2; (c) A=1.3; (d) A=1.5; (e) A=2 

3. Conclusions 

Proper mathematical description and characterization of mechanical oscillations are of utmost importance 

in the field of mechanical engineering. Most of the developed and well-established mathematical formulas 

pertain to conservative systems, while the real systems are actually non-conservative. For this reason, this short 

communication sets an important objective of providing a few formulas for non-conservative systems.  

A novel first computable integral to reduce a second order non-conservative oscillator: ̇ ẍ(t) = f(x(t), ẋ(t)),
f: ℝ × ℝ → ℝ to a conservative one: ẍ(t) = f(x(t), ϕ(x(t))) is proved. 

To the best of the author’s knowledge, this result, which includes the possibility to account for periodic 

orbits computing a reduced first order ODE: ẋ = ϕ(x), has not been published yet.  

The specialization of the results in this paper to ODE’s: ẍ = f1(x) ∙ f2(ẋ) provides an amplitude-period 

formula for non-conservative oscillators. 
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