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The surface effects play an important role in the vibrational properties of 
nanostructures. Investigating the nonlinear vibrations of nanobeams, the 
nonlinear material effects on surface effects have not been considered. This study 
aims to do research on the effect of material nonlinear coming from the stress-
strain nonlinear equation on surface effects in order to increase the calculation 
accuracy. The effect of materially nonlinear behaviors of the bulk and surface 
effects in the presence of nonlinear Von Kármán strains are considered 
simultaneously. The governing equation based on the Hamilton principle and then 
the governing nonlinear differential equation based on applying the Galerkin’s 
method have been extracted. The obtained nonlinear differential equation 
possesses cubic and quantic nonlinearities, which are due to the geometric and 
the materially nonlinear behaviors, respectively. The quantic nonlinearity is only 
due to the materially nonlinear behavior of bulk and surface effects. The temporal 
response and nonlinear frequency of nanobeams are obtained by solving the 
nonlinear differential equation based on the modified Lindstedt–Poincaré method. 
The results represent the simultaneous effects of the materially nonlinear 
behaviors of the bulk and surface layers on the temporal response and nonlinear 
frequency of the nanobeam. To examine the validity of the results, the obtained 
natural frequencies are compared with other studies in the absence of the 
materially nonlinear term. 
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1. Introduction 
Nowadays, nanotechnology has been turned to one of the most important fields in engineering science. Considering 

the applications of nanostructures in different devices, such as nano-resonators (Hamidi, Hosseini, Hassannejad, et 
al., 2020; Mahmoud, 2016) , recognizing gas atoms (Arash & Wang, 2013), devices’ memories (Bunch et al., 2007), 
absorber systems (Qasim et al., 2018), and composite materials (Kakei et al., 2018; Kakei et al., 2019; Kuilla et al., 
2010), many investigators developed passions to determine the mechanical behaviors of these structures in nanoscale. 
The effects of size are important in studying the vibrational behavior (Wang & Wang, 2011) of buckling (Nejad et al., 
2016) and the failure (Zhao et al., 2012) of nanoscale structures. In order to prove the size-dependency, researchers 
have used the nonlocal and nonlocal strain gradient theories (Alizadeh Hamidi et al., 2020; Hamidi, Hosseini, Hayati, 
et al., 2020; Khosravi, Hosseini, & Hamidi, 2020; Khosravi, Hosseini, Hamidi, et al., 2020). Thus, Dang and Nguyen 
(Dang & Nguyen, 2021) carried out the buckling and nonlinear vibrations of a porous FG nanobeam.  They utilized 
the Von Kármán strains to illustrate the nonlinear effects and obtained the governing equation with the help of nonlocal 
strain gradient. Moreover, they evaluated the effect of the power-law index and porosity in results. Manjur Alam et 
al. (Alam & Mishra, 2021) studied the nonlinear vibrational behavior of a FG nanobeam embedded in a nonlinear 
elastic medium. To show the nonlinearity effects, they established the Von Kármán strains in modeling nanobeams. 
Furthermore, they assessed the influences of the medium’s shear interactions on the nanobeam’s natural frequencies. 
Dang (Dang, 2020) carried out the nonlinear vibrations and buckling of a nanobeam based on the nonlocal strain 
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gradient theory. In their models, the nanobeam was under the axial compressive force. Furthermore, the critical 
buckling forces and the natural frequencies were calculated. Jazi (Jazi, 2020) investigated the forced nonlinear 
vibrations of a double Timoshenko nanobeam considering a concentrated moving force particle. The vibrational 
equations and the influence of velocity of particle’s movement on the dynamic behavior of the nanobeam. Ebrahimi 
and Hosseini (Ebrahimi & Hosseini, 2021) evaluated the dynamic instability and nonlinear vibrations of the Euler-
Bernoulli nanobeam. The  desired nanobeam was under the thermo-magneto-mechanical loads. Also, the desired 
model was under the external parametric excitation. As a follow-up, to show the instability regions, the parametric 
excitation effect was investigated. Hieu et al. (Hieu & Bui, 2020), studied the nonlinear vibrations of a FG nanobeam 
employing the nonlocal strain gradient theory. Meanwhile, they used the Von Kármán strains to show the nonlinearity. 
Moreover, the thickness effect on the natural frequency was assessed. Ghadiri and Norouzi (Noroozi & Ghadiri, 2020) 
carried out the nonlinear forced vibrations of a nanobeam under an external axial excitation force. They considered 
the influence of gravity to derive the governing equations and examined the effect of attenuation on the dynamic 
stability of a nanobeam. Şimşek (Şimşek, 2014) illustrated nonlinear vibrations based on the nonlocal theory. The 
governing equations were obtained based on nonlinear Von Kármán strains. Eventually, the natural frequencies were 
utilized to analyze the boundary condition. Shafiei et al. (Shafiei et al., 2016) illustrated the nonlinear vibrations of 
the nanobeam based on nonlocal theory. The properties of the nanobeam were considered longitudinally. They solved 
the equations based on GDQ and obtained the natural frequencies. The effect of AFG (axially functionally graded) 
power-law index on the natural frequency was explained. Hasheminejad and Gheshlaghi (Gheshlaghi & 
Hasheminejad, 2011) studied the nonlinear vibrations of the nanobeam considering the surface effect. They applied 
the nonlocal theory to prove the size effect and analyzed the effect of nanobeam’s thickness in the presence of surface 
effect on the natural frequency. Zhao et al. (Zhao et al., 2021) carried out the vibrational behavior of the Timoshenko 
nanobeam regarding the surface effect. They used molecular dynamics and generalized differential quadrature 
methods to understand the surface effects on the vibrations of nanobeam. Sourani et al. (Sourani et al., 2020) studied 
the dynamic stability of a Euler-Bernoulli nanobeam, considering the external longitudinal excitation force. In the 
desirable model, the surface effects had been considered. The governing equation was solved based on Bolotin and 
Incremental Harmonic Balance (IHB) methods and dynamic instability regions were examined for different 
parameters, such as the surface effect, longitudinal scale parameter, and temperature changes. Esfahani et al. (Esfahani 
et al., 2019) evaluated the nonlinear vibrations of FG nanobeams considering the surface effects based on nonlocal 
theory. They considered the Casimir forces on their governing equation, and in obtained results, they investigated the 
surface effects on the nanobeam’s frequency response. The sources examined in the introduction section show the 
nonlinear vibrations of nanobeams only by considering geometric nonlinear Von Kármán strains.  Meanwhile, in this 
case, in the study of nonlinear vibrations of nanobeams, in addition to geometric nonlinearity, the material nonlinearity 
is also considered. Also, due to the importance of surface effects on dynamic characteristics, for the first time, the 
materially nonlinear effect of bulk and surface layers are investigated, simultaneously. As a result, the governing 
equations are obtained using the Hamilton principle, taking into account material nonlinearity and surface effects. The 
governing equations are solved using the modified Lindstedt–Poincaré method. The natural frequency and responses 
obtained are examined for the material nonlinearity of the surface layers and bulk, and the compressive preload force. 
To show the accuracy of the results, the obtained natural frequency is compared with the results in the literature in the 
absence of material nonlinearity. 

2. The Surface Elasticity Theory 
To obtain the nonlinear vibration equation of the nanobeam, assuming that the nanobeam is only under pure 

bending (Rao, 2007), according to Euler-Bernoulli's theory, the displacement field for any desired point in 𝑥𝑥, 𝑦𝑦, and 
𝑧𝑧 directions is as follows:  

 𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = −𝑧𝑧 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

,𝑢𝑢𝑦𝑦(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 0,𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥, 𝑡𝑡)                                           (1) 

Assuming Von Kármán nonlinear strains, the only non-zero strain component is expressed as follows: 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀0 − 𝑧𝑧𝜀𝜀1 = 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

                                                                  (2) 

Considering Von Kármán nonlinear strains, the nonlinear strain stress equation for the nanobeam can be stated as 
follows (Lee et al., 2008): 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥𝐸𝐸 + 𝜀𝜀𝑥𝑥𝑥𝑥2 𝐷𝐷                                                                                 (3) 
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In Eq. (3), 𝐷𝐷is the third-order elastic modulus, which expresses the materially nonlinear behavior of the bulk, and 
𝐸𝐸 represents the Young's modulus . The surface effects on the mechanical behavior of nanomaterials are obtained by 
considering surface energy or surface stresses. The surface stress created in the nanobeam is as follows (Cammarata, 
1994; C. Chen et al., 2006): 

𝜎𝜎𝑠𝑠 = 𝜏𝜏0 + 𝐸𝐸𝑠𝑠𝜀𝜀𝑥𝑥𝑥𝑥                                                                            (4) 

Given that the surface stress in Eq. (4) is linear, according to Eq. (3), it can be considered nonlinear. In this case, 
Eq. (4) is written as follows:  

𝜎𝜎𝑠𝑠 = 𝜏𝜏0 + 𝐸𝐸𝑠𝑠𝜀𝜀𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑠𝑠𝜀𝜀𝑥𝑥𝑥𝑥2                                                                   (5) 

Eq. (5) shows the materially nonlinear behavior for the surface layers, and 𝐷𝐷𝑠𝑠, 𝐸𝐸𝑠𝑠 and 𝜏𝜏0 show the surface effects 
on the vibrational equations and are defined in the form of the third-order surface modulus of elasticity, the surface 
elastic modulus, and the residual surface tension, respectively. Also, 𝐷𝐷𝑠𝑠 stands for the materially nonlinear behavior 
of surface layers in this equation. According to the Young-Laplace equation (T. Chen et al., 2006; Gurtin et al., 1998), 
the �𝜏𝜏𝑖𝑖𝑖𝑖+ − 𝜏𝜏𝑖𝑖𝑖𝑖−�𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 stress, in a region of the surface, is defined as follows: 

�𝜏𝜏𝑖𝑖𝑖𝑖+ − 𝜏𝜏𝑖𝑖𝑖𝑖−�𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 = 𝜏𝜏0𝜅𝜅                                                                          (6) 

According to Eq. (6), 𝜅𝜅 represent the curvature of the surface, and 𝑛𝑛𝑖𝑖is the normal unit vector of the surface. Due 
to the fact that the curvature of the bending of the beam is approximated as:𝑤𝑤″(𝑥𝑥), in the unreformed configuration, 
we will have 𝑤𝑤″(𝑥𝑥) = 0. Therefore, the residual surface stress will not affect the structure. For the deformed beam, 
the residual surface tension creates a transverse force distributed in the longitudinal direction, which according to the 
Laplace-Young equation predicts the transverse force as follows (Wang & Feng, 2007, 2009):  

𝑞𝑞(𝑥𝑥) = 𝐻𝐻𝑤𝑤″(𝑥𝑥)                                                                                  (7) 

in which, 𝐻𝐻 is equivalent to 2𝜏𝜏0𝑏𝑏, and 𝑏𝑏is the width’s structure. 
 

3. The Extraction of Governing Equation 
The Hamilton principle is used to obtain the governing vibrational equations (Tauchert, 1974): 

∫ 𝛿𝛿(𝑈𝑈 − 𝑇𝑇 − 𝑉𝑉)𝑑𝑑𝑡𝑡 = 0𝑡𝑡
0                                                                              (8) 

where 𝑈𝑈, 𝑇𝑇 and, 𝑉𝑉represent the work done by the external forces, kinetic energy, and strain energy, respectively. 
The strain energy variation for the nanobeam is as follows: 

 𝛿𝛿𝑈𝑈 = ∫ �𝑁𝑁 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� −𝑀𝑀𝛿𝛿 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

��𝑑𝑑𝑥𝑥𝐿𝐿
0                                                              (9) 

In Eq. (9), 𝑀𝑀 and 𝑁𝑁are defined as follows: 

 𝑀𝑀 = ∫ 𝑧𝑧𝑡𝑡𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 + ℎ𝑏𝑏
2𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥

𝑠𝑠(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) − ℎ𝑏𝑏
2
𝑡𝑡𝑥𝑥𝑥𝑥
𝑠𝑠(𝑙𝑙𝑙𝑙𝜕𝜕𝑢𝑢𝑢𝑢) + ∫ 𝑡𝑡𝑥𝑥𝑥𝑥

𝑠𝑠(𝑙𝑙𝑢𝑢𝑙𝑙𝑡𝑡)
ℎ
2
−ℎ
2

𝑧𝑧𝑑𝑑𝑧𝑧 + ∫ 𝑡𝑡𝑥𝑥𝑥𝑥
𝑠𝑠(𝑢𝑢𝑖𝑖𝑟𝑟ℎ𝑡𝑡)

ℎ
2
−ℎ
2

𝑧𝑧𝑑𝑑𝑧𝑧                    (10) 

 𝑁𝑁 = ∫ 𝑡𝑡𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 + 𝑏𝑏𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥
𝑠𝑠(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) + 𝑏𝑏𝑡𝑡𝑥𝑥𝑥𝑥

𝑠𝑠(𝑙𝑙𝑙𝑙𝜕𝜕𝑢𝑢𝑢𝑢) + ∫ 𝑡𝑡𝑥𝑥𝑥𝑥
𝑠𝑠(𝑙𝑙𝑢𝑢𝑙𝑙𝑡𝑡)

ℎ
2
−ℎ
2

𝑑𝑑𝑧𝑧 + ∫ 𝑡𝑡𝑥𝑥𝑥𝑥
𝑠𝑠(𝑢𝑢𝑖𝑖𝑟𝑟ℎ𝑡𝑡)

ℎ
2
−ℎ
2

𝑑𝑑𝑧𝑧                           (11) 

The kinetic energy variation for the nanobeam is as follows: 

 ∫ 𝛿𝛿𝑇𝑇𝑡𝑡
0 𝑑𝑑𝑡𝑡 = 𝜌𝜌𝑑𝑑∫ ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
𝛿𝛿 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
�𝐿𝐿

0 𝑑𝑑𝑥𝑥𝑡𝑡
0 𝑑𝑑𝑡𝑡 = −𝜌𝜌𝑑𝑑∫ ∫ �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑡𝑡2

𝛿𝛿𝑤𝑤�𝐿𝐿
0 𝑑𝑑𝑥𝑥𝑡𝑡

0 𝑑𝑑𝑡𝑡                               (12) 

The variation of work done by the external forces for the nanobeam is as follows: 

 𝛿𝛿𝛿𝛿 = ∫ �𝑞𝑞𝛿𝛿𝑤𝑤 + 𝑝𝑝 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
𝛿𝛿 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐿𝐿

0 𝑑𝑑𝑥𝑥                                                                (13) 

where 𝑞𝑞is defined as: 

 𝐻𝐻 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

                                                                                  (14) 



Reports in Mechanical Engineering ISSN: 2683-5894  71 

Investigation of Material Nonlinearities in Surface Effects and Bulk on the Vibration ... (Nihayat Hussein Ameen) 

 

 
 

 
 

 

in which the parameter𝐻𝐻depends on the surface effects defined in Eq. (7). Also, 𝑃𝑃is the magnitude of the 
compressive pre-load force. By substituting Eqs. (9), (12), and (13) in the Hamilton principle, and by the partial 
integration of the governing equations on the nanobeam’s vibrations, the following is obtained: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0                                                                                     (15) 

 𝜕𝜕2𝑀𝑀
𝜕𝜕𝑥𝑥2

+ 𝑁𝑁 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝑝𝑝 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 𝜌𝜌𝑑𝑑 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

                                                       (16) 

The boundary condition is obtained as follows: 

 𝑁𝑁 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥
− 𝑝𝑝 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
= 0𝑜𝑜𝑜𝑜𝑤𝑤 = 0                                                                 (17) 

 𝑀𝑀 = 0𝑜𝑜𝑜𝑜 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0                                                                                   (18) 

Using Eqs. (10) and (11), the force and bending resultants are obtained as follows: 

 𝑁𝑁 = 𝑑𝑑𝑥𝑥𝑥𝑥
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+ 𝐵𝐵𝑥𝑥𝑥𝑥 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

�
2

+ 𝐶𝐶𝑥𝑥𝑥𝑥
1
4
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
4
                                                        (19) 

 𝑀𝑀 = −𝐹𝐹𝑥𝑥𝑥𝑥
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝐵𝐵𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

                                                                    (20) 

In Eqs. (19) and (20), 𝑑𝑑𝑥𝑥𝑥𝑥, 𝐵𝐵𝑥𝑥𝑥𝑥, 𝐶𝐶𝑥𝑥𝑥𝑥,  and 𝐹𝐹𝑥𝑥𝑥𝑥 are defined as follows: 

𝑑𝑑𝑥𝑥𝑥𝑥 = 2𝐸𝐸𝑠𝑠(𝑏𝑏 + ℎ) + 𝐸𝐸𝑏𝑏ℎ 
𝐵𝐵𝑥𝑥𝑥𝑥 = 2𝐷𝐷𝑠𝑠 �𝑏𝑏ℎ

2

4
+ ℎ3

12
� + 𝐷𝐷 𝑏𝑏ℎ3

12
  

𝐶𝐶𝑥𝑥𝑥𝑥 = 2𝐷𝐷𝑠𝑠(𝑏𝑏 + ℎ) + 𝐷𝐷𝑏𝑏ℎ   
𝐹𝐹𝑥𝑥𝑥𝑥 = �2𝐸𝐸𝑠𝑠

𝑏𝑏ℎ2

4
+ 2𝐸𝐸𝑠𝑠

ℎ3

12
+ 𝐸𝐸 𝑏𝑏ℎ3

12
�                                                        (21) 

According to Eq. (15), the force resultant in Eq. (19) is written as: 

 𝑁𝑁 = ∫ �𝑑𝑑𝑥𝑥𝑥𝑥
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+ 𝐵𝐵𝑥𝑥𝑥𝑥 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

�
2

+ 𝐶𝐶𝑥𝑥𝑥𝑥
1
4
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
4
�𝐿𝐿

0 𝑑𝑑𝑥𝑥                                             (22) 

By placing Eqs. (14) and (20) in Eq. (16), the desirable transverse free nonlinear vibrations of the nanobeam are 
obtained by considering the nonlinear behavior of surface effects and geometric and material nonlinearities as follows: 

 �𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐵𝐵𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
� 𝜕𝜕

4𝜕𝜕
𝜕𝜕𝑥𝑥4

+ 2𝐵𝐵𝑥𝑥𝑥𝑥 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

�
3

+ �𝑝𝑝 − 𝑁𝑁 + 6𝐵𝐵𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕3𝜕𝜕
𝜕𝜕𝑥𝑥3

� 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝐻𝐻 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜌𝜌𝑑𝑑 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

= 0        (23) 

in which 𝑁𝑁 is based on Eq. (22). Eq. (23) is the governing equation on the transverse free vibrations of nanobeam 
in the presence of materially nonlinear behaviors for the bulk and surface layers along with nonlinear strains. 
Coefficients 𝐵𝐵𝑥𝑥𝑥𝑥and 𝐶𝐶𝑥𝑥𝑥𝑥 in Eq. (21) show the materially nonlinear of the bulk and materially nonlinear of surface 
layers, respectively. The solution of Eq. (23) is considered as: 𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 𝛿𝛿(𝑡𝑡)𝜙𝜙(𝑥𝑥); where 𝜙𝜙(𝑥𝑥) for the clamped-
clamped boundary condition is defined as follows: 

 𝜙𝜙(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛 �𝑛𝑛𝑛𝑛𝑥𝑥
𝐿𝐿
�                                                                                 (24) 

Applying the Galerkin’s method to Eq. (23), the following nonlinear differential equation is obtained: 

 �̈�𝛿 + 𝜔𝜔𝑛𝑛0
2 𝛿𝛿 + 𝜀𝜀1𝛿𝛿3 + 𝜀𝜀𝛿𝛿5 = 0                                                            (25) 

The coefficients of Equation (25) are defined as follows: 

𝜔𝜔𝑛𝑛0
2 = �𝐹𝐹𝑥𝑥𝑥𝑥𝐿𝐿2𝑛𝑛4𝑛𝑛4+(𝐻𝐻−𝑢𝑢)𝐿𝐿4𝑛𝑛2𝑛𝑛2�

𝜌𝜌𝐴𝐴𝐿𝐿6
   

𝜀𝜀1 = 𝑛𝑛4𝑛𝑛4�𝐿𝐿4𝐴𝐴𝑥𝑥𝑥𝑥+3𝐿𝐿2𝑛𝑛2𝑛𝑛2𝐵𝐵𝑥𝑥𝑥𝑥�
4𝜌𝜌𝐴𝐴𝐿𝐿8

    

𝜀𝜀 = 3𝑛𝑛6𝑛𝑛6𝐶𝐶𝑥𝑥𝑥𝑥𝐿𝐿2

32𝜌𝜌𝐴𝐴𝐿𝐿8
                                                                           (26) 

In Eq. (25), 𝜔𝜔𝑛𝑛0 stands for the linear frequency of the corresponding system and the fifth-order nonlinearity 
coefficient in the differential equation coming from the material nonlinearity of the bulk and the nonlinearity of the 
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surface effects. To solve the nonlinear differential Eq. (25), the modified Lindstedt–Poincaré method will be used, and 
finally, the results will be validated with the fourth-order Runge-Kutta method. The differential Eq. (25) can be stated 
as: 

 �̈�𝛿 + 𝜔𝜔𝑛𝑛𝑛𝑛0
2 𝛿𝛿 + 𝜀𝜀 �𝜀𝜀1

𝜀𝜀
𝛿𝛿3 + 𝛿𝛿5� = 0                                                          (27) 

in which 𝑓𝑓(𝛿𝛿) can be expressed as: 

 𝑓𝑓(𝛿𝛿) = �𝜀𝜀1
𝜀𝜀
𝛿𝛿3 + 𝛿𝛿5�                                                                       (28) 

Assuming 𝜏𝜏 = 𝜔𝜔𝑡𝑡 and 𝛿𝛿 = 𝑎𝑎 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏, where 𝑎𝑎 is the amplitude of the initial condition in the free vibrations, Eq. 
(28) is rewritten as: 

 𝑓𝑓(𝛿𝛿) = 𝜀𝜀1
𝜀𝜀
𝑎𝑎3 𝑐𝑐𝑜𝑜𝑠𝑠3 𝜏𝜏 + 𝑎𝑎5 𝑐𝑐𝑜𝑜𝑠𝑠5 𝜏𝜏 = 𝐶𝐶1 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏 + 𝐶𝐶3 𝑐𝑐𝑜𝑜𝑠𝑠 3 𝜏𝜏 + 𝐶𝐶5 𝑐𝑐𝑜𝑜𝑠𝑠 5 𝜏𝜏                            (29) 

The nanobeam’s nonlinear frequency 𝜔𝜔,  in the modified Lindstedt–Poincaré method, is extended as (Cheung et 
al., 1991): 

 𝜔𝜔2 = (𝜔𝜔𝑛𝑛𝑛𝑛0
2 + 𝜀𝜀𝜔𝜔1) �1 + 1

𝜔𝜔𝑛𝑛𝑛𝑛0
2 +𝜀𝜀𝜔𝜔1

(𝜀𝜀2𝜔𝜔2 + 𝜀𝜀3𝜔𝜔3 + ⋯ )�                                      (30) 

In the modified Lindstedt–Poincaré method, a new parameter, which is between zero and one, is defined as 
(Burton, 1984): 

 𝛼𝛼 = 𝜀𝜀
𝑎𝑎

𝐶𝐶𝐻𝐻
𝜔𝜔𝑛𝑛02 +𝜀𝜀𝑎𝑎𝐶𝐶1

                                                                          (31) 

In Eq. (31), 𝐶𝐶𝐻𝐻 and other coefficients are defined as: 

𝐶𝐶𝐻𝐻 = 𝐶𝐶3 + 1
3
𝐶𝐶5 + 1

6
𝐶𝐶7 + ⋯  

 𝐶𝐶1 = 5𝑎𝑎5

8
+ 3𝑎𝑎3𝜀𝜀1

4𝜀𝜀
,𝐶𝐶3 = 5𝑎𝑎5

16
+ 𝑎𝑎3𝜀𝜀1

4𝜀𝜀
,𝐶𝐶5 = 1

16
𝑎𝑎5                                             (32) 

By defining the new parameter𝛼𝛼, the expansion of 𝜔𝜔2can be written as: 

 𝜔𝜔2 = 𝜔𝜔𝑛𝑛0
2 �1 + 𝛼𝛼𝑎𝑎𝜔𝜔1

𝐶𝐶𝐻𝐻−𝛼𝛼𝐶𝐶1
� [1 + 𝛿𝛿2𝛼𝛼2 + 𝛿𝛿3𝛼𝛼3 + ⋯ ]                                           (33) 

In the above equation, 𝛿𝛿𝑖𝑖 for 𝑠𝑠 = 2,3,⋯  are the unknown coefficients, which will be achieved in the solution 
process. In the modified Lindstedt–Poincaré method, the solution can be defined as: 

 𝛿𝛿 = ∑ 𝛼𝛼𝑛𝑛𝛿𝛿𝑛𝑛
𝑛𝑛
0                                                                                   (34) 

By changing the variable 𝜏𝜏 = 𝜔𝜔𝑡𝑡and considering 𝑛𝑛
2𝑊𝑊
𝑛𝑛𝑡𝑡2

= 𝜔𝜔2 𝑛𝑛
2𝑊𝑊
𝑛𝑛𝜏𝜏2

, Eq. (27) is rewritten as:  

 𝜔𝜔2𝛿𝛿″ + 𝜔𝜔𝑛𝑛𝑛𝑛0
2 𝛿𝛿 + 𝜀𝜀 �𝜀𝜀1

𝜀𝜀
𝛿𝛿3 + 𝛿𝛿5� = 0                                                   (35) 

By placing the term 𝜔𝜔2 in Eq. (35), the following equation is obtained: 

 𝜔𝜔𝑛𝑛𝑛𝑛0
2 �1 + 𝛼𝛼𝑎𝑎𝜔𝜔1

𝐶𝐶𝐻𝐻−𝛼𝛼𝐶𝐶1
� [1 + 𝛿𝛿2𝛼𝛼2 + 𝛿𝛿3𝛼𝛼3 + ⋯ ]𝛿𝛿″ + 𝜔𝜔𝑛𝑛0

2 𝛿𝛿 + 𝛼𝛼𝑎𝑎𝜔𝜔𝑛𝑛02

𝐶𝐶𝐻𝐻−𝛼𝛼𝐶𝐶1
�𝜀𝜀1
𝜀𝜀
𝛿𝛿3 + 𝛿𝛿5� = 0        (36) 

 
By simplifying Eq. (36), the following equation is obtained: 

 (𝐶𝐶𝐻𝐻 − 𝛼𝛼𝐶𝐶1 + 𝛼𝛼𝑎𝑎𝜔𝜔1)[1 + 𝛿𝛿2𝛼𝛼2 + 𝛿𝛿3𝛼𝛼3 + ⋯ ]𝛿𝛿″ + (𝐶𝐶𝐻𝐻 − 𝛼𝛼𝐶𝐶1)𝛿𝛿 + 𝛼𝛼𝑎𝑎 �𝜀𝜀1
𝜀𝜀
𝛿𝛿3 + 𝛿𝛿5� = 0        (37) 

By placing Eq. (34) in Eq. (37), the following equation is extracted: 

(𝐶𝐶𝐻𝐻 − 𝛼𝛼𝐶𝐶1 + 𝛼𝛼𝑎𝑎𝜔𝜔1)[1 + 𝛿𝛿2𝛼𝛼2 + 𝛿𝛿3𝛼𝛼3 + 𝛿𝛿4𝛼𝛼4 + 𝛿𝛿5𝛼𝛼5 + 𝛿𝛿6𝛼𝛼6] × 
�𝛿𝛿0

″ + 𝛼𝛼𝛿𝛿1
″ + 𝛼𝛼2𝛿𝛿2

″ + 𝛼𝛼3𝛿𝛿3
″ + 𝛼𝛼4𝛿𝛿4

″ + 𝛼𝛼5𝛿𝛿5
″� + 

(𝐶𝐶𝐻𝐻 − 𝛼𝛼𝐶𝐶1)(𝛿𝛿0 + 𝛼𝛼𝛿𝛿1 + 𝛼𝛼2𝛿𝛿2 + 𝛼𝛼3𝛿𝛿3 + 𝛼𝛼4𝛿𝛿4 + 𝛼𝛼5𝛿𝛿5) +  
𝛼𝛼𝑎𝑎 �𝜀𝜀1

𝜀𝜀
(𝛿𝛿0 + 𝛼𝛼𝛿𝛿1 + 𝛼𝛼2𝛿𝛿2 + 𝛼𝛼3𝛿𝛿3 + 𝛼𝛼4𝛿𝛿4 + 𝛼𝛼5𝛿𝛿5)3�+  

𝛼𝛼𝑎𝑎[(𝛿𝛿0 + 𝛼𝛼𝛿𝛿1 + 𝛼𝛼2𝛿𝛿2 + 𝛼𝛼3𝛿𝛿3 + 𝛼𝛼4𝛿𝛿4 + 𝛼𝛼5𝛿𝛿5)5] + ⋯ = 0                                  (38) 
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By simplifying Eq. (38) and rearranging the equation as coefficients of powers 𝛼𝛼 and setting them to zero, the 
following equations are obtained: 

𝛼𝛼0:𝛿𝛿0
″ + 𝛿𝛿0 = 0 

𝛼𝛼1:𝛿𝛿1
″ + 𝛿𝛿1 =

𝐶𝐶1
𝐶𝐶𝐻𝐻

𝛿𝛿0 + �
𝐶𝐶1
𝐶𝐶𝐻𝐻

−
𝑎𝑎𝜔𝜔1
𝐶𝐶𝐻𝐻

�𝛿𝛿0
″ −

𝑎𝑎𝜀𝜀1
𝐶𝐶𝐻𝐻𝜀𝜀

𝛿𝛿0
3 −

𝑎𝑎
𝐶𝐶𝐻𝐻

𝛿𝛿0
5 

𝛼𝛼2:𝛿𝛿2
″ + 𝛿𝛿2 =

𝐶𝐶1
𝐶𝐶𝐻𝐻

𝛿𝛿1 + �
𝐶𝐶1
𝐶𝐶𝐻𝐻

−
𝑎𝑎𝜔𝜔1
𝐶𝐶𝐻𝐻

�𝛿𝛿1
″ − 𝛿𝛿2𝛿𝛿0

″ −
3𝑎𝑎𝜀𝜀1
𝐶𝐶𝐻𝐻𝜀𝜀

𝛿𝛿0
2𝛿𝛿1 −

5𝑎𝑎
𝐶𝐶𝐻𝐻

𝛿𝛿0
4𝛿𝛿1 

𝛼𝛼3:𝛿𝛿3
″ + 𝛿𝛿3 = 𝐶𝐶1

𝐶𝐶𝐻𝐻
𝛿𝛿2 + �𝐶𝐶1𝜕𝜕2

𝐶𝐶𝐻𝐻
− 𝛿𝛿3 −

𝑎𝑎𝜕𝜕2𝜔𝜔1
𝐶𝐶𝐻𝐻

�𝛿𝛿2
″ − 𝛿𝛿2𝛿𝛿1

″ + �𝐶𝐶1
𝐶𝐶𝐻𝐻
− 𝑎𝑎𝜔𝜔1

𝐶𝐶𝐻𝐻
�𝛿𝛿2

″ − 3𝑎𝑎𝜀𝜀1
𝐶𝐶𝐻𝐻𝜀𝜀

𝛿𝛿1
2𝛿𝛿0 −

3𝑎𝑎𝜀𝜀1
𝐶𝐶𝐻𝐻𝜀𝜀

𝛿𝛿0
2𝛿𝛿1  

− 5𝑎𝑎
𝐶𝐶𝐻𝐻
𝛿𝛿0

4𝛿𝛿2 −
10𝑎𝑎
𝐶𝐶𝐻𝐻

𝛿𝛿0
3𝛿𝛿1

2                                                               (39) 

The solution of the equation containing 𝛼𝛼0 with assumed initial conditions as  𝛿𝛿0(0) = 𝑎𝑎 and 𝛿𝛿0
′(0) = 0 is 

achievable as: 

 𝛿𝛿0 = 𝑎𝑎 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏                                                                            (40) 

Substituting 𝛿𝛿0 in the equation in which 𝛼𝛼1 exists leads to the following equation: 

𝛿𝛿1
″ + 𝛿𝛿1 =

𝐶𝐶1
𝐶𝐶𝐻𝐻

𝛿𝛿0 + �
𝐶𝐶1
𝐶𝐶𝐻𝐻

−
𝑎𝑎𝜔𝜔1
𝐶𝐶𝐻𝐻

�𝛿𝛿0
″ −

𝑎𝑎𝜀𝜀1
𝐶𝐶𝐻𝐻𝜀𝜀

𝛿𝛿0
3 −

𝑎𝑎
𝐶𝐶𝐻𝐻

𝛿𝛿0
5 

= �− 5𝑎𝑎6

8𝐶𝐶𝐻𝐻
− 3𝑎𝑎4𝜀𝜀1

4𝐶𝐶𝐻𝐻𝜀𝜀
+ 𝑎𝑎2𝜔𝜔1

𝐶𝐶𝐻𝐻
� 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏 + �− 5𝑎𝑎6

16𝐶𝐶𝐻𝐻
− 𝑎𝑎4𝜀𝜀1

4𝐶𝐶𝐻𝐻𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 3𝜏𝜏) − 𝑎𝑎6

16𝐶𝐶𝐻𝐻
𝑐𝑐𝑜𝑜𝑠𝑠( 5𝜏𝜏)                      (41)      

In the differential Eq. (41), the coefficient of the term𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏is the secular term whose value must be equal to zero, so 
𝜔𝜔1 can be expressed as: 

 𝜔𝜔1 = 𝑎𝑎2

8𝜀𝜀
(5𝑎𝑎2𝜀𝜀 + 6𝜀𝜀1)                                                                      (42) 

The solution of the Eq. (41) is obtained by considering the initial conditions 𝛿𝛿1(0) = 0 and 𝛿𝛿1
′(0) = 0as follows: 

 𝛿𝛿1 = �− 𝑎𝑎6

24𝐶𝐶𝐻𝐻
− 𝑎𝑎4𝜀𝜀1

32𝐶𝐶𝐻𝐻𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏 + � 5𝑎𝑎6

128𝐶𝐶𝐻𝐻
+ 𝑎𝑎4𝜀𝜀1

32𝐶𝐶𝐻𝐻𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 3𝜏𝜏) + 𝑎𝑎6

384𝐶𝐶𝐻𝐻
𝑐𝑐𝑜𝑜𝑠𝑠( 5𝜏𝜏)                      (43) 

By placing the solution 𝛿𝛿1 and 𝛿𝛿0 in the equation, including the coefficient 𝛼𝛼2,  the following equation can be 
obtained: 

𝛿𝛿2
″ + 𝛿𝛿2 = � 35𝑎𝑎11

512𝐶𝐶𝐻𝐻2
+ 𝑎𝑎𝛿𝛿2 + 29𝑎𝑎9𝜀𝜀1

256𝐶𝐶𝐻𝐻2𝜀𝜀
+ 3𝑎𝑎7𝜀𝜀12

64𝐶𝐶𝐻𝐻2𝜀𝜀2
− 𝑎𝑎7𝜔𝜔1

24𝐶𝐶𝐻𝐻2
− 𝑎𝑎5𝜀𝜀1𝜔𝜔1

32𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏  

 + �− 35𝑎𝑎11

3072𝐶𝐶𝐻𝐻2
− 5𝑎𝑎6𝐶𝐶1

16𝐶𝐶𝐻𝐻2
− 5𝑎𝑎9𝜀𝜀1

128𝐶𝐶𝐻𝐻2𝜀𝜀
− 𝑎𝑎4𝐶𝐶1𝜀𝜀1

4𝐶𝐶𝐻𝐻2𝜀𝜀
− 3𝑎𝑎7𝜀𝜀12

128𝐶𝐶𝐻𝐻2𝜀𝜀2
+ 45𝑎𝑎7𝜔𝜔1

128𝐶𝐶𝐻𝐻2
+ 9𝑎𝑎5𝜀𝜀1𝜔𝜔1

32𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 3𝜏𝜏)   

+�−
125𝑎𝑎11

3072𝐶𝐶𝐻𝐻2
−

𝑎𝑎6𝐶𝐶1
16𝐶𝐶𝐻𝐻2

−
𝑎𝑎9𝜀𝜀1

16𝐶𝐶𝐻𝐻2𝜀𝜀
−

3𝑎𝑎7𝜀𝜀12

128𝐶𝐶𝐻𝐻2𝜀𝜀2
+

25𝑎𝑎7𝜔𝜔1
384𝐶𝐶𝐻𝐻2

� 𝑐𝑐𝑜𝑜𝑠𝑠( 5𝜏𝜏) 

+ �− 95𝑎𝑎11

6144𝐶𝐶𝐻𝐻2
− 3𝑎𝑎9𝜀𝜀1

256𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 7𝜏𝜏) − 5𝑎𝑎11

6144𝐶𝐶𝐻𝐻2
𝑐𝑐𝑜𝑜𝑠𝑠( 9𝜏𝜏)                                     (44) 

 
In the Eq. (44), by setting 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏to zero, 𝛿𝛿2 will be as follows: 

 𝛿𝛿2 = −𝑎𝑎4�105𝑎𝑎6𝜀𝜀2+174𝑎𝑎4𝜀𝜀𝜀𝜀1+72𝑎𝑎2𝜀𝜀12−64𝑎𝑎2𝜀𝜀2𝜔𝜔1−48𝜀𝜀𝜀𝜀1𝜔𝜔1�
1536𝐶𝐶𝐻𝐻2𝜀𝜀2

                                         (45) 

By placing 𝜔𝜔1 in Eq. (45), 𝛿𝛿2 is simplified as: 

 𝛿𝛿2 = −𝑎𝑎6�65𝑎𝑎4𝜀𝜀2+96𝑎𝑎2𝜀𝜀𝜀𝜀1+36𝜀𝜀12�
1536𝐶𝐶𝐻𝐻

2𝜀𝜀2
                                                                  (46) 

Finally, the solution of the differential equation, including 𝛼𝛼2 and by consideration of the initial conditions 
𝛿𝛿2(0) = 0 and 𝛿𝛿2

′(0) = 0, and replacing 𝜔𝜔1and 𝛿𝛿2, can be achieved as: 

𝛿𝛿2 = �− 509𝑎𝑎11

147456𝐶𝐶𝐻𝐻2
− 𝑎𝑎6𝐶𝐶1

24𝐶𝐶𝐻𝐻2
− 95𝑎𝑎9𝜀𝜀1

12288𝐶𝐶𝐻𝐻2𝜀𝜀
− 𝑎𝑎4𝐶𝐶1𝜀𝜀1

32𝐶𝐶𝐻𝐻2𝜀𝜀
− 𝑎𝑎7𝜀𝜀12

256𝐶𝐶𝐻𝐻2𝜀𝜀2
+ 215𝑎𝑎7𝜔𝜔1

4608𝐶𝐶𝐻𝐻2
+ 9𝑎𝑎5𝜀𝜀1𝜔𝜔1

256𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏  

 + � 35𝑎𝑎11

24576𝐶𝐶𝐻𝐻2
+ 5𝑎𝑎6𝐶𝐶1

128𝐶𝐶𝐻𝐻2
+ 5𝑎𝑎9𝜀𝜀1

1024𝐶𝐶𝐻𝐻2𝜀𝜀
+ 𝑎𝑎4𝐶𝐶1𝜀𝜀1

32𝐶𝐶𝐻𝐻2𝜀𝜀
+ 3𝑎𝑎7𝜀𝜀12

1024𝐶𝐶𝐻𝐻2𝜀𝜀2
− 45𝑎𝑎7𝜔𝜔1

1024𝐶𝐶𝐻𝐻2
− 9𝑎𝑎5𝜀𝜀1𝜔𝜔1

256𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 3𝜏𝜏)     

+ � 125𝑎𝑎11

73728𝐶𝐶𝐻𝐻2
+ 𝑎𝑎6𝐶𝐶1

384𝐶𝐶𝐻𝐻2
+ 𝑎𝑎9𝜀𝜀1

384𝐶𝐶𝐻𝐻2𝜀𝜀
+ 𝑎𝑎7𝜀𝜀12

1024𝐶𝐶𝐻𝐻2𝜀𝜀2
− 25𝑎𝑎7𝜔𝜔1

9216𝐶𝐶𝐻𝐻2
� 𝑐𝑐𝑜𝑜𝑠𝑠( 5𝜏𝜏)   



Reports in Mechanical Engineering, Vol. 5, No. 1, 2024, pp. 43-67 

74  ISSN: 2683-5894 

 

 
 

 

+ � 95𝑎𝑎11

294912𝐶𝐶𝐻𝐻2
+ 𝑎𝑎9𝜀𝜀1

4096𝐶𝐶𝐻𝐻2𝜀𝜀
� 𝑐𝑐𝑜𝑜𝑠𝑠( 7𝜏𝜏) + 𝑎𝑎11

98304𝐶𝐶𝐻𝐻2
𝑐𝑐𝑜𝑜𝑠𝑠( 9𝜏𝜏)                                         (47) 

By obtaining 𝛿𝛿1and 𝛿𝛿2, the final solution will be as: 

 𝛿𝛿 = 𝛿𝛿0 + 𝛼𝛼𝛿𝛿1 + 𝛼𝛼2𝛿𝛿2                                                                      (48) 

By placing 𝛿𝛿1and 𝛿𝛿2 in the final solution, 𝛿𝛿will be achieved as:  

𝛿𝛿 = �𝑎𝑎 + 𝛼𝛼 �− 𝑎𝑎6

24𝐶𝐶𝐻𝐻
− 𝑎𝑎4𝜀𝜀1

32𝐶𝐶𝐻𝐻𝜀𝜀
� + 𝛼𝛼2 �− 509𝑎𝑎11

147456𝐶𝐶𝐻𝐻2
− 𝑎𝑎6𝐶𝐶1

24𝐶𝐶𝐻𝐻2
− 95𝑎𝑎9𝜀𝜀1

12288𝐶𝐶𝐻𝐻2𝜀𝜀
− 𝑎𝑎4𝐶𝐶1𝜀𝜀1

32𝐶𝐶𝐻𝐻2𝜀𝜀
− 𝑎𝑎7𝜀𝜀12

256𝐶𝐶𝐻𝐻2𝜀𝜀2
+ 215𝑎𝑎7𝜔𝜔1

4608𝐶𝐶𝐻𝐻2
+

9𝑎𝑎5𝜀𝜀1𝜔𝜔1
256𝐶𝐶𝐻𝐻2𝜀𝜀

�� 𝑐𝑐𝑜𝑜𝑠𝑠 𝜏𝜏  

 + �𝛼𝛼 � 5𝑎𝑎6

128𝐶𝐶𝐻𝐻
+ 𝑎𝑎4𝜀𝜀1

32𝐶𝐶𝐻𝐻𝜀𝜀
� + 𝛼𝛼2 � 35𝑎𝑎11

24576𝐶𝐶𝐻𝐻2
+ 5𝑎𝑎6𝐶𝐶1

128𝐶𝐶𝐻𝐻2
+ 5𝑎𝑎9𝜀𝜀1

1024𝐶𝐶𝐻𝐻2𝜀𝜀
+ 𝑎𝑎4𝐶𝐶1𝜀𝜀1

32𝐶𝐶𝐻𝐻2𝜀𝜀
+ 3𝑎𝑎7𝜀𝜀12

1024𝐶𝐶𝐻𝐻2𝜀𝜀2
− 45𝑎𝑎7𝜔𝜔1

1024𝐶𝐶𝐻𝐻2
− 9𝑎𝑎5𝜀𝜀1𝜔𝜔1

256𝐶𝐶𝐻𝐻2𝜀𝜀
�� 𝑐𝑐𝑜𝑜𝑠𝑠( 3𝜏𝜏)  

+ �𝛼𝛼 𝑎𝑎6

384𝐶𝐶𝐻𝐻
+ 𝛼𝛼2 � 125𝑎𝑎11

73728𝐶𝐶𝐻𝐻2
+ 𝑎𝑎6𝐶𝐶1

384𝐶𝐶𝐻𝐻2
+ 𝑎𝑎9𝜀𝜀1

384𝐶𝐶𝐻𝐻2𝜀𝜀
+ 𝑎𝑎7𝜀𝜀12

1024𝐶𝐶𝐻𝐻2𝜀𝜀2
− 25𝑎𝑎7𝜔𝜔1

9216𝐶𝐶𝐻𝐻2
�� 𝑐𝑐𝑜𝑜𝑠𝑠( 5𝜏𝜏) + 𝛼𝛼2 � 95𝑎𝑎11

294912𝐶𝐶𝐻𝐻2
+

𝑎𝑎9𝜀𝜀1
4096𝐶𝐶𝐻𝐻2𝜀𝜀

� 𝑐𝑐𝑜𝑜𝑠𝑠( 7𝜏𝜏) + 𝛼𝛼2 𝑎𝑎11

98304𝐶𝐶𝐻𝐻2
𝑐𝑐𝑜𝑜𝑠𝑠( 9𝜏𝜏)                                            (49) 

Eventually, by solving the two of terms of the modified Lindstedt–Poincaré method, the dimensionless nonlinear 
frequency of the nanobeam can be written as: 

 𝜔𝜔 = �𝜔𝜔𝑛𝑛02 �1 +
𝛼𝛼𝑎𝑎

3
8𝜀𝜀(5𝑎𝑎2𝜀𝜀+6𝜀𝜀1)

𝐶𝐶𝐻𝐻−𝛼𝛼𝐶𝐶1
�                                                                   (50) 

Also, the nonlinear non-dimensional frequency of the nanobeam for the three terms of the modified Lindstedt–
Poincaré method of the solution is as follows: 

 𝜔𝜔 = �𝜔𝜔𝑛𝑛02 �1 +
𝛼𝛼𝑎𝑎

3
8𝜀𝜀(5𝑎𝑎2𝜀𝜀+6𝜀𝜀1)

𝐶𝐶𝐻𝐻−𝛼𝛼𝐶𝐶1
� �1 + (−𝑎𝑎6(65𝑎𝑎4𝜀𝜀2+96𝑎𝑎2𝜀𝜀𝜀𝜀1+36𝜀𝜀12)

1536𝐶𝐶𝐻𝐻
2𝜀𝜀2

)𝛼𝛼2�                             (51) 

4. Results Status 
In this section, the results obtained from the modified Lindstedt–Poincaré method are examined by considering 

the materially nonlinear behavior of the bulk and surface effects for nanobeam which is shown in Fig1. Furthermore, 
the nonlinear frequency and free response of the nanobeam are investigated in the presence of material and geometric 
nonlinearities. In the results, the volumetric mass and Young's modulus of the nanobeam are considered 2300 𝑘𝑘𝑟𝑟

𝑚𝑚3and 
1𝑇𝑇𝑃𝑃𝑎𝑎, respectively. Table 1 shows the comparison between the nanobeam’s nonlinear frequency ratio and previous 
studies. In this table, the dimensionless natural frequency is as follows: 

Nonlinear frequency ratio= Nonlinear natural frequency
Linear natural frequency

                                                       (52) 

Also, in this table, the material nonlinear parameters and the longitudinal scale are zero . As can be seen, the results 
obtained in the table below are consistent with the previous researches. 

 
Figure 1: Schematic of Nanobeam 
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Table 1: The Comparison of Nonlinear Frequency’s Ratio of the Nanobeam for L=2, h=0.1 (Nazemnezhad & 
Hosseini-Hashemi, 2014). 

𝐀𝐀(𝐧𝐧𝐧𝐧) Present Ref. (Singh et al., 
1990) 

Ref. (Nageswara 
Rao, 1992) 

Ref. (Nazemnezhad 
& Hosseini-

Hashemi, 2014) 
ℎ

√12
 

1.08916 1.0892 1.0889 1.0937 

2ℎ
√12

 
1.31776 1.3178 1.3183 1.3750 

3ℎ
√12

 
1.62561 1.6257 1.6260 1.8438 

 
Figure 2: The Convergence of the Nanobeam’s Response Obtained from the Modified Lindstedt–Poincaré Method 

by Numerical Solution for 𝐿𝐿 = 100𝑛𝑛𝑛𝑛,ℎ = 𝑎𝑎 = 5𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −50 𝜕𝜕
𝑚𝑚

,𝐸𝐸𝑠𝑠 = 6 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 =
10𝑛𝑛𝑁𝑁. 

 
Figure 3: The Difference Between Obtained Responses by Considering One, Two, and Three Terms of the 

Modified Lindstedt–Poincaré Method for 𝐿𝐿 = 100𝑛𝑛𝑛𝑛,ℎ = 𝑎𝑎 = 5𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −50 𝜕𝜕
𝑚𝑚

,𝐸𝐸𝑠𝑠 =

6 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 = 10𝑛𝑛𝑁𝑁. 
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Figure 4:The Difference Between the Modified Lindstedt–Poincaré Method and the Fourth-Order Runge–Kutta 

Numerical Solution for 𝐿𝐿 = 100𝑛𝑛𝑛𝑛,ℎ = 𝑎𝑎 = 5𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −50 𝜕𝜕
𝑚𝑚

,𝐸𝐸𝑠𝑠 = 6 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 =
10𝑛𝑛𝑁𝑁 

 
Figure 5: The nanobeam’s Response for Different Values of Third-Order Elastic Modulus 𝐷𝐷𝑠𝑠 and 𝐿𝐿 = 20𝑛𝑛𝑛𝑛,ℎ =

𝑎𝑎 = 3𝑛𝑛𝑛𝑛,𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐸𝐸𝑠𝑠 = 6 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 = 10𝑛𝑛𝑁𝑁. 

Figure 2 illustrates the convergence of the nanobeam’s response obtained from the modified Lindstedt–Poincaré 
method by a numerical solution of the fourth-order Runge-Kutta. In this figure, 𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀1,𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀2, and𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀3 
represent the one, two, and three terms of the Lindstedt–Poincaré method. As can be seen, increasing the terms of the 
modified Lindstedt–Poincaré solution leads to the convergence of the nanobeam’s response to the numerical solution. 
Figure 3 depicts the difference in the dimensionless responses for one, two, and three terms of the modified Lindstedt–
Poincaré method. The difference in the solution at the extremum points of the graph in the case  𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀3 −𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀1 
is greater than the case 𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀3 −𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀2. Figure 4 demonstrates the difference between responses obtained from 
the Lindstedt–Poincaré method and numerical solution. The difference between the modified Lindstedt–Poincaré 
method by considering three terms (𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀3) and numerical solution is less than the other two cases. In other words, 
increasing the number of terms of the modified Lindstedt–Poincaré method reduces the error compared to the 
numerical solution. Figure 5 shows the nanobeam’s dimensionless response for different values of the third-order 
surface modulus of elasticity. This parameter causes material nonlinearity in surface effects. Therefore, in this figure, 
rising the size of the surface’s third-order elastic modulus increases the nanobeam’s time period, and this causes the 
extremum of the dimensionless response to shift. 
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Figure 6:  Nonlinear Frequency for Different Values of Surface Elastic Modulus Versus Thickness-to-Length Ratio 

𝐿𝐿 = 20𝑛𝑛𝑛𝑛, ℎ = 𝑎𝑎 = 4𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −150 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 = 10𝑛𝑛𝑁𝑁. 

 
Figure 7:  Nonlinear Frequency for Different Values of the Residual Surface Tension Versus Thickness-to-Length 

Ratio 𝐿𝐿 = 20𝑛𝑛𝑛𝑛, ℎ = 𝑎𝑎 = 4𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −150 𝜕𝜕
𝑚𝑚

,𝐸𝐸𝑠𝑠 = 3 𝜕𝜕
𝑚𝑚

,𝑝𝑝 = 10𝑛𝑛𝑁𝑁. 

 
Figure 8: Nonlinear frequency for different values of the dimensionless compressive pre-load versus thickness-to-

length ratio 𝐿𝐿 = 20𝑛𝑛𝑛𝑛, ℎ = 𝑎𝑎 = 4𝑛𝑛𝑛𝑛, 𝑏𝑏 = 2ℎ,𝐷𝐷 = −2𝑇𝑇𝑃𝑃𝑎𝑎,𝐷𝐷𝑠𝑠 = −150 𝜕𝜕
𝑚𝑚

,𝐸𝐸𝑠𝑠 = 3 𝜕𝜕
𝑚𝑚

, 𝜏𝜏0 = 3 𝜕𝜕
𝑚𝑚

. 
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Figure 6 shows the nonlinear frequency of the nanobeam for different values of surface elastic modulus versus 
thickness-to-length ratio. Increasing the thickness-to-length ratio increases the stiffness of the nanobeam, and thus it 
increases the nonlinear frequency of the nanobeam. Also, in this figure, increasing the surface elastic modulus 
increases the stiffness of the nanobeam, which raise the nonlinear frequency of the nanobeam. Figure 7 illustrates the 
nonlinear frequency of nanobeam for different amounts of residual surface tension versus thickness-to-length ratio. It 
is obvious that the increase in the residual surface tension increases the stiffness of the nanobeam, and then it increases 
the nonlinear frequency of the nanobeam. From Figures 6 and 7, raising the residual surface tension has led to more 
changes in the nonlinear frequency diagram than the increase in surface elastic modulus. Figure 8 demonstrates the 
nonlinear frequency of the nanobeam for different amounts of dimensionless compressive pre-load force 𝑢𝑢

𝐻𝐻
against 

thickness-to-length ratio. In this figure, increasing the compressive pre-load force reduces the nonlinear frequency of 
the nanobeam. 

 
Figure 9: The Nonlinear Frequency of the Nanobeam for Different Nonlinearities Versus Thickness-to-Length 

Ratio. 
Figure 9 depicts the nanobeam’s nonlinear frequency for material nonlinearity of bulk 𝐷𝐷 and materially nonlinear 

of surface layers 𝐷𝐷𝑠𝑠 and geometric nonlinearity due to Von Kármán strains. As can be seen in this figure, there is a 
geometric nonlinearity for all states. The first state-considering the geometric nonlinearity and linear behaviors of the 
bulk and surface layers (Type A), the nonlinear frequency of the nanobeam is higher than other types which are shown 
in this figure. The second state-the presence of either nonlinearity (Type B and Type C) along with geometric 
nonlinearity causes the nonlinear frequency of the nanobeam to decrease in comparison with the first case because the 
coefficients of the third-order elastic modulus 𝐷𝐷and third-order surface elastic modulus 𝐷𝐷𝑠𝑠possess negative  signs. 
Therefore, these coefficients reduce the strain energy of the nanobeam and consequently reduce the nonlinear 
frequency of the nanobeam, and the amount of this reduction depends on the amounts of 𝐷𝐷 and 𝐷𝐷𝑠𝑠. The third state-
the simultaneous presence of nonlinearities (Type D) along with geometric nonlinearity causes the nonlinear frequency 
to decrease more than all types because 𝐷𝐷and 𝐷𝐷𝑠𝑠cause further decreases in the strain energy. Consequently, leads to 
a further decrease in the nonlinear frequency than in the previous two states. 

5. Conclusion 
In this paper, free vibrations of the nanobeam are investigated by considering the materially nonlinear behaviors 

of bulk and surface layers. The results of this study indicate the following: 
• The free-response obtained from the modified Lindstedt–Poincaré method was converged by growing the 

number of solution's terms to the numerical solution of the fourth-order of Runge-Kutta in the presence of the 
materially nonlinear bulk and materially nonlinear surface layers. 

• Increasing the dimensionless compressive force declined the nonlinear frequency of the nanobeam. 
• The difference between the solution obtained from the modified Lindstedt–Poincaré method and the 

numerical solution for three terms of the solution is less than the one and two terms coming from the modified 
Lindstedt–Poincaré incare method. 

• Increasing the size of the third-order surface modulus increases the free response of the period. 
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• Reducing the residual surface tension reduces the nonlinear frequency of the nanobeam. 
• Increasing the third-order elastic modulus and the third-order surface modulus of elasticity increase and 

decrease the nonlinear frequency of the nanobeam, respectively. 
• The simultaneous effect of material nonlinearities of the bulk and surface layers cause a large reduction in 

the nanobeam nonlinear frequency compared to the other cases. 
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