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 This paper deals with investigating the nonlinear oscillation of carbon 

nanotube manufactured nano-resonator. The governing equation of the nano-

resonator is extracted in the context of the nonlocal elasticity. The impact of 

the Casimir force is also incorporated in the developed model. A closed-form 

solution based on the energy balance method is presented for investigating the 

oscillations of the nano-resonator. The proposed closed-form solution is 

compared with the numerical solution.  The impact of influential parameters 

including applied voltage, Casimir force, geometrical and nonlocal parameters 

on the nano resonator’s vibration and frequency are investigated. The obtained 

results demonstrated that the Casimir force reduces the nano-resonator 

frequency. However, the nonlocal parameter has a hardening effect and 

enhances the system’s frequency. 
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1. Introduction 

Owing to their remarkable electrical and mechanical properties, carbon nanotubes (CNTs) have become of 

great interest to a wide range of applications in science and technology. CNTs have potential for broad 

application in ultra-small devices including, but not limited to, sensor (Ali-Akbari et al., 2019; Kang et al., 

2017), resonators (Besley, 2020; Ouakad & Younis, 2010), tweezers (Farrokhabadi et al., 2014; Kim & Lieber, 

1999), probes (Y. Liu et al., 2017), actuators(Sedighi & Farjam, 2017) and switches (Dequesnes et al., 2004). 

With the new demands for ultra-small high accuracy devices, miniature resonators become the building block 

of modern instruments such as sensors (Hajjam & Pourkamali, 2011; Qian et al., 2016), accelerometers 

(Tocchio et al., 2011), and communication and signal processing devices (Mestrom et al., 2008).  

Simulating and investigating micro/nano resonators’ dynamic performances are essential steps prior to 

manufacturing these systems. Hence, previous researchers have focused on exploring the phenomena affecting 

the behavior of micro/nano-resonators.  A simple one degree of freedom model for investigating the chaotic 

regime of electromechanical nano-resonator was presented by Amorim et al. (2015). They considered the 

impacts of the Casimir force in their simulation. While using the one degree of freedom model can considerably 

simplify the simulating and analyzing of the nano-resonator, its result might be unacceptable. To overcome 

this, some researchers use the continuum models for investigating the dynamic performances of these devices. 

Miandoab et al. (2015) analyzed the dynamic and chaos in an electromechanically nano-resonator. They 

include the impact of both DC and AC voltage in their simulation. The influence of the material size 

dependency on the dynamic performance of nano-resonator investigated by Miandoab et al. (2014). To this 
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end, they developed the governing equation of nano-resonator based on the strain gradient elasticity. A 

homotopy analysis method is employed for investigating the nonlinear dynamic of double side resonator by 

Tajaddodianfar et al. (2017).  Dantas and Gusso (2018) investigated the chaotic dynamics of a MEMS 

resonator. They simulated the resonator based on the classical Euler-Bernoulli beam model. 

Within the classical continuum theories, the stresses at each point are just related to stains at the same point. 

Nevertheless, the stresses at one point of the nonlocal elasticity are related to the strains at the whole body. 

This assumption incorporates the internal length-scale as an extra material factor in the constitutive equations. 

The nonlocal elasticity was introduced by Eringen and Edelen (1972). This theory has been employed for 

investigating the impact of scale dependency of CNT based structures (Khosravi et al., 2020; H. Liu et al., 

2019; Pashaki & Ji, 2020; Rahmani et al., 2018; Yang et al., 2018; Zeighampour et al., 2017). Hosseini (2018) 

simulated the heat effected nano-beam resonator based on the nonlocal thermoelectricity. He considered the 

thermal shock loading as an actuating method instead of electrostatic actuation 

In this research article, a closed-form solution based on the energy balance method is presented for nonlocal 

dynamic analysis of CNT based nano-resonator. The nano-resonator is simulated as a double clamped CNT 

between two fixed plates. The CNT deformation is modeled in the context of nonlocal Euler Bernoulli beam 

theory. Then, with the help of Hamilton’s principle, the nano-resonator’s governing equation is developed. 

Also, the impact of the Casimir force is taken into account in the developed model. The partial differential 

equation of the system is transformed into a nonlinear ordinary differential equation using the Galerkin 

procedure. Then, the energy balance method is employed, and a close form solution for oscillations of nano-

resonator is established. To examine the accuracy of the solution, he proposed a closed-form solution is 

compared to a numerical simulation. Finally, the impact of small-scale parameters, Casimir force, CNT 

geometry on the amplitude and frequency of the vibrations are examined.  

2. Theoretical Model 

Figure 1 shows a CNT based nano-resonator. The nano-resonator is constructed from a clamped-clamped 

CNT fixed between two plates. The mean radius of the CNT is Rw, and its length is L. Also, the gap between 

the CNT and both the upper and the lower plate is g. 

 

 

Figure 1. A CNT based nano-resonator 

We model the nano resonator as a clamped-clamped Euler-Bernoulli beam. Therefore, the CNT 

deformation can be explained as: 
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The stain energy of the CNT is given as: 

0

1
ˆ.

2

L

A
U dAdx   σ.ε  

(2) 

where U is the strain energy,  indicated the stress tensor and  is the strain tensor. Using the displacement 

field of Eq. (1), the non-zero component of strain tensor is obtained as:  
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Substituting Eq. (3) in Eq. (1), the strain energy of the nano-resonator is defined as: 
2
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The work of the external loads ( ˆ( , )F x t ), is explained as:  

(5) 

ˆ

0 0

ˆ ˆ ˆ( , ) d d

L w

W F x t w x    

It is worth to note that the external load exerting on the nano-resonator is the summation of the electrostatic 

and Casimir forces.  

The electrical force acts on the nano-tweezers can be determined by using the capacitor model. We separate 

the electrical force to the upper and lower plate contributions. The electrical force (Felc) between the CNT and 

a plate can be explained as (Koochi et al., 2015): 
2
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(6) 

In the above equation 0 is the vacuum permittivity and V is the applied voltage. When the nano-resonator 

oscillates, the distance between the upper plate and CNT becomes ˆ ( )g w t , and the distance between the upper 

plate and CNT becomes ˆ ( )g w t . Therefore, the upper and lower electrical load for vibrating nano-resonator 

are defined as: 
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Where the superscript upper and lower indicate the force due to upper and lower plate, respectively. Similar 

to electrical force, the Casimir attraction is due to the upper and lower plates. For a cylinder over a plate, the 

Casimir force (FCas) is given as:  

(9) 3 3 2
.

8 ln( ) 16 ln ( )
W W

Cas

c c
F

g g
g g

R R
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 

  

where   is the reduced Planck’s constant, and c is the speed of light. For vibrating nano-resonator, the 

contributions of the upper and lower plate on the Casimir force are defined as: 
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The beam’s kinetic energy (T) is described as: 

(12) 
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where  is the mass density. Hamilton’s principle is employed to extract the CNT based nano-sensor 

governing equation:  
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Replacing Eqs. (4), (5) and (12) in Eq. (13) and after some mathematical elaborations, one obtains: 

(14) 
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with the boundary conditions below: 
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The nonlocal constitutive equation for bending moment and normal force can be explained as (Mahmoud et 

al., 2012): 
2
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where the superscript l indicates the local force and moments and superscript nl indicates the nonlocal force 

and moment. Also, a is the internal characteristic length, and e0 is a constant appropriate to each material. The 

local moment of bending (Ml) and the normal force (Nl) are described as: 
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Replacing Eqs. (14) and (15) in Eqs. (17) and (18) results in: 
3
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Replacing Eqs. (15) and (16) in Eq. (13), the nonlocal constitutive equation are obtained as: 

(23-a) 
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Where A is the cross-section area and I is the cross-section second moment of area. By neglecting the 

longitudinal inertia, Eq. (17) can be replaced with the following equation: 
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Substituting the electrical and Casimir force in the above equation, the nonlocal governing equation of CNT 

based nano-resonator is achieved as: 
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The dimensionless motion equation could be reached by considering the following parameters: 
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Using Eq. (39), we have: 
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3. Solution 

The idea of the energy balance method comes from the fact that for an oscillation system with the frequency 

of  when t n   , the whole energy of the system is in the form of the kinetic energy. Similarly, when 

2 1

2

n
t


   , the velocity is zero and the whole energy of the system is in the form of the potential energy 

(n=0,1,2,..). Hence, in t=/4, a balance between the kinetic and the potential energy of the system can be 

assumed. The energy balance method utilizes the advantage of this point to collocate a solution at t=/4. 

While the idea of the energy balance method is straightforward, the results are valid for investigating the 

vibration of some highly nonlinear systems. Interestingly, even the lowest order approximations are of high 

accuracy (Fu et al., 2011; Ganji et al., 2009; Ghalambaz et al., 2015; Jamshidi & Ganji, 2010; Mehdipour et 

al., 2010). 

To solve the nonlinear differential equation of the system based on the energy balance method, the 

displacement is separated into time-dependent and time-independent parts as: 
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We consider the first mode shape of the clamped-clamped beam as the time-independent part: 
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where 4.73004074  . Multiplying both sides of  Eq. (27) by   x and integrating the result relation from 0 

to 1 yields 
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where: 
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In Eq. (31): 
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A trial solution with the amplitude A and frequency  is assumed as: 
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The initial conditions for Eq. (28) are considered as zero velocity and displacement magnitude A: 

(0)

(0) 0

q A

q




 (34) 

Following the energy balance method, the variational form of Eq. (30) is defined as: 

2 2 3 4 5 6 7

0 1 2 3 4 5 6

1 1 1 1 1 1 1
( )

2 2 3 4 5 6 7o
J q q q q q q q q q d

 
                

 
  (35) 

The Hamiltonian can be rewritten as: 

2

2 3 4 5 6 7

0 1 2 3 4 5 6

2 3 4 5 6 7

0 1 2 3 4 5 6

1

2

1 1 1 1 1 1

2 3 4 5 6 7

1 1 1 1 1 1

2 3 4 5 6 7

H q

q q q q q q q

A A A A A A A



             

            

 (36) 

Substituting the trial solution in Eq. (36) results in: 

     

     

   

2 2 2 2

0 1

3 3 3 4 4 4 5 5 5

2 3 4

6 6 6 7 7 7

5 6

1 1
( sin ) ( cos ) ( cos )

2 2

1 1 1
( cos ) ( cos ) ( cos )

3 4 5

1 1
( cos ) ( cos ) 0

6 7

H A A A A A

A A A A A A

A A A A

           

           

        

 (37) 

Solving Eq. (37) for  results in:  

     

   

   

 

2 2 2 3 3 3

0 1 2

4 4 4 5 5 5

3 4

6 6 6 7 7 7

5 6

2
2 ( cos ) ( cos ) ( cos )

3

1 2
( cos ) ( cos )

2 5

1 2
( cos ) ( cos )

3 7

sin

A A A A A A

A A A A

A A A A

A

 
           

 
        
 
 
         
 

 


 

(38) 
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Collocation Eq. (38) at /4: 

2

0 1 2

3 4

3 4

5 6

5 6

840 (2 2) 105 140 (4 2)

630 84 (8 2)

35 15 (6 2)

420

A A

A A

A A

A

       
 
     
 
     
 

   

(39) 

Substituting Eq. (39) in Eq. (33) one obtains: 

2

0 1 2

3 4

3 4

5 6

5 6

840 (2 2) 105 140 (4 2)

630 84 (8 2)

35 15 (6 2)
( ) cos[ ]

420

A A

A A

A A
q A

A

       
 
     
 
     
 

    

(40) 

Finally, the nonlinear oscillation of nano-resonator can be expressed as the following relation: 

 

2

0 1 2

3 4

3 4

5 6

5 6

840 (2 2) 105 140 (4 2)

630 84 (8 2)

35 15 (6 2)
, ( ) cos[ ]

420

A A

A A

A A
w x A x

A

       
 
     
 
     
 

     

(41) 

4. Results and discussion 

To investigate the accuracy of the proposed closed form solution, the nano-resonator amplitude as a 

function of dimensionless time parameter () is presented in Figure 2. In this figure, the nonlocal dimensionless 

parameter is 0.4,  the Casimir force parameter is 1,  the electrical parameter is 2, and the geometrical parameter 

is 20. Figure 2 demonstrates that the results of the energy balance method are entirely close to the numerical 

solution. 

 
Figure 2. Comparison between the energy balance method and the numerical solution 

 

Figure 3 shows the impact of the geometrical parameter and the applied voltage on the nano-resonator’s 

frequency. In this figure, the nonlocal dimensionless parameter is 0.8,  the Casimir force parameter is 2, and 

the geometrical parameter is 20.  Figure 3 demonstrates that the frequency of the nano-resonator enhances by 

increasing the geometrical parameter . This means that the nano-resonator frequency rises by increasing the 

initial gap between the plates and the CNT. Also, figure 3 reveals that improving the applied voltage reduces 

the frequency of the system. An exciting point is an interaction between the curve and the horizontal axis. For 

=50, the nano-resonator’s frequency is zero for geometrical parameters less than 34. 

Similarly, when =10, the nano-resonator’s frequency is zero for geometrical parameters less than 11.  This 

is due to the pull-in instability, which is a well-known phenomenon in NEMS/MEMS. In other words, the 

interactions between the curves and the horizontal axis demonstrate the lowest allowable geometrical parameter 

for a specific applied voltage. The geometrical parameter at the interaction point can be used for determining 

the minimum permissible gap, which is an essential parameter for designing the nano-resonators.  



                ISSN: 2683-5894 

Reports in Mechanical Engineering, Vol. 2, No. 1, 2021:  41 – 50 

48 

 
Figure 3. The impact of the geometrical parameter and external voltage on the nano-resonator’s 

frequency 

 

Figure 4 depicts the impact of Casimir force and geometrical parameter on the nano-resonator’s frequency. 

This figure demonstrates that the Casimir force reduces the system frequency. It is clear from Fig. 4 that the 

impact of Casimir force on the nano-resonators’s frequency is more dominant for the lower geometrical 

parameter. Similar to figure 3, the interaction point with the horizontal axis shows the nano-resonator’s pull-in 

behavior. 

 
Figure 4. The impact of Casimir force and geometrical parameter on the nano-resonator’s frequency 

 

 
Figure 5. The impact of the nonlocal and geometrical parameter on the nano-resonator’s frequency 

The frequency of the system for various applied voltage from zero to the pull-in values is demonstrated in 

Figure 5. The impact of the nonlocal parameter is also shown in this figure. Figure 5 reveals that the nonlocal 

parameter reduces the system frequency.  Figure 5 indicates that the nonlocal parameter enhances the system 

rigidity and reduces the nano-resonator’s pull-in voltage.  
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5. Conclusion 

In this paper, a closed-form solution for investigating the nonlinear oscillation of CNT manufactured is 

presented. The nano-resonator is considered as a doubly clamped CNT between two fixed plates. The electrical 

potential is imposed between the CNT and both upper and lower surfaces. The nonlinear governing equation 

of the nano-resonator is extracted based on the nonlocal elasticity. The impact of the geometrical nonlinearity 

in the term of mid-plane stretching is incorporated in the constitutive equation. Also, the effect of the Casimir 

force is taken into account in the developed simulation. The nonlinear partial differential equation of the system 

transformed into a nonlinear ordinary differential equation. Finally, the energy balance method is employed, 

and a closed-form solution is obtained for the system’s vibrations. The obtained results demonstrated that 

external electrical force enhances the amplitude of the nano-resonator. However, the nano-resonator’s 

frequency reduces by improving the external electrical potential. Investigating the impact of Casimir force 

revealed that the influence of Casimir force on the nano-resonator’s dynamic performances is similar to 

electrical force. In other words, the Casimir force enhances the amplitude and reduces the system’s frequency. 

Conversely, the nonlocal parameter has a hardening effect. Improving the nonlocal parameter increases the 

nano-resonator’s frequency and subsequently reduces the system’s pull-in voltage. 
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