Geometric Investigation of Thin Perforated Steel Plates Under Biaxial Elasto-Plastic Buckling by using Constructal Design
DOI:
https://doi.org/10.31181/Keywords:
Constructal Design, Elasto-Plastic Buckling, Biaxial Plate Buckling, Structural Integrity, Thin-Walled StructuresAbstract
In many structural engineering applications, perforated thin plates are commomly required, such as for cable and pipe passages or inspection windows, among other. It is well known that thin plates subjected to compressive loads may experience a structural instability called buckling, characterized by sudden out-of-plane displacements. To investigate this phenomenon and determine the optimal geometry of a thin steel plate featuring a centered elliptical opening, the Constructal Design (CD) method was applied in combination with the Exhaustive Search (ES) approach and the Finite Element Method (FEM). The CD method facilitates assessing geometric configurations to achieve the most effective distribution of imperfections, thereby maximizing the performance indicator relevant to this solid mechanics analysis. From the results of around 700 cases numerically simulated, it was observed that incorporating perforations impacts the mechanical strength of the plate by up to 62.5% when compared to an unperforated plate of identical dimensions (considered as a reference plate). In addition, plates without cutouts (reference plate), with different aspect ratios, the same thickness, the same amount of material, and the same normalized ultimate stress, can exhibit deflections with a difference of up to 229.4%.
References
Åesson, B. (2014). Plate buckling in bridges and other structures. CRC Press. https://doi.org/10.1201/9781482266030
Baumgardt, G. R., Fragassa, C., Rocha, L. A. O., dos Santos, E. D., da Silveira, T., & Isoldi, L. A. (2023). Computational model verification and validation of elastoplastic buckling due to combined loads of thin plates. Metals, 13(4), 731. https://doi.org/10.3390/met13040731
Bejan, A. (2019). Freedom and evolution: hierarchy in nature, society and science. Springer Nature. https://doi.org/10.1007/978-3-030-34009-4
Bejan, A., & Lorente, S. (2008). Design with constructal theory. John Wiley & Sons. https://doi.org/10.1002/9780470432709
Bejan, A., & Peder Zane, J. (2012). Design in nature. Mechanical Engineering, 134(06), 42-47. https://doi.org/10.1115/1.2012-JUN-4
Bhadra, R., Jana, T., Mitra, A., & Sahoo, P. (2023). Effect of CNT radius on flattening contact behaviour of CNT-Al nanocomposite: A numerical approch. Reports in Mechanical Engineering, 4(1), 121-130. https://doi.org/10.31181/rme040102082023b
Cao, Y., Zhou, Y., Tian, S., Takagi, J., Li, Z., Fang, D., & Fang, X. (2024). Performance of novel perforated double-core steel-plate assembled buckling-restrained braces. Journal of Building Engineering, 82, 108326. https://doi.org/10.1016/j.jobe.2023.108326
Chajes, A. (1974). Principles of structural stability theory. Prentice-Hall google schola, 4, 11-20. https://doi.org/https://books.google.com.pk/books/about/Principles_of_structural_stability_theor.html?id=FeYeAQAAIAAJ&redir_esc=y
Chen, L., Feng, H., Zhang, F., & Ge, Y. (2024). Constructal design for composite heat dissipating structure composed of an “arrow”-shaped high conductivity channel and an externally connected “T”-shaped fin. International Communications in Heat and Mass Transfer, 153, 107341. https://doi.org/10.1016/j.icheatmasstransfer.2024.107341
Cheng, B., & Zhao, J. (2010). Strengthening of perforated plates under uniaxial compression: Buckling analysis. Thin-Walled Structures, 48(12), 905-914. https://doi.org/10.1016/j.tws.2010.06.001
Cunegatto, E. H. T., Gotardo, M., & Zinani, F. S. F. (2023). Numerical analysis of tube arrangements with one, two, and four degrees of freedom for heat transfer with pseudoplastic fluids. International Journal of Heat and Mass Transfer, 208, 124080. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124080
da Silva, C. C. C., Helbig, D., Cunha, M. L., dos Santos, E. D., Rocha, L. A. O., Real, M. d. V., & Isoldi, L. A. (2019). Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 1-18. https://doi.org/10.1007/s40430-019-1815-7
da Silveira, T., Baumgardt, G., Rocha, L., dos Santos, E., & Isoldi, L. (2022). Numerical simulation and constructal design applied to biaxial elastic buckling of plates of composite material used in naval structures. Composite Structures, 290, 115503. https://doi.org/10.1016/j.compstruct.2022.115503
Dan, Z., Feng, H., Chen, L., Liao, N., & Ge, Y. (2024). Constructal design of printed circuit recuperator for S-CO2 cycle via multi-objective optimization algorithm. Science China Technological Sciences, 67(1), 285-294. https://doi.org/10.1007/s11431-023-2500-x
Dong, J., Ma, X., Zhuge, Y., & Mills, J. E. (2018). Local buckling of thin plate on tensionless elastic foundations under interactive uniaxial compression and shear. Theoretical and Applied Mechanics Letters, 8(2), 75-82. https://doi.org/10.1016/j.taml.2018.02.003
dos Santos, E. D., Isoldi, L. A., Gomes, M. d. N., & Rocha, L. A. (2017). The constructal design applied to renewable energy systems. In Sustainable energy technologies (pp. 45-62). CRC Press. https://doi.org/10.1201/9781315269979-4
Ehsani, A., & Dalir, H. (2019). Multi-objective optimization of composite angle grid plates for maximum buckling load and minimum weight using genetic algorithms and neural networks. Composite Structures, 229, 111450. https://doi.org/10.1016/j.compstruct.2019.111450
El-Sawy, K. M., & Martini, M. I. (2010). Stability of biaxially loaded square plates with single central holes. Ships and Offshore Structures, 5(4), 283-293. https://doi.org/10.1080/17445300903566181
El-Sawy, K. M., Nazmy, A. S., & Martini, M. I. (2004). Elasto-plastic buckling of perforated plates under uniaxial compression. Thin-Walled Structures, 42(8), 1083-1101. https://doi.org/10.1016/j.tws.2004.03.002
Falkowicz, K., & Debski, H. (2021). Stability analysis of thin-walled composite plate in unsymmetrical configuration subjected to axial load. Thin-Walled Structures, 158, 107203. https://doi.org/10.1016/j.tws.2020.107203
Farajpour, M., Shahidi, A., & Farajpour, A. (2018). A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires. Materials Research Express, 5(3), 035026. https://doi.org/10.1088/2053-1591/aab3a9
Feijó, B. C., Pavlovic, A., Rocha, L. A. O., Isoldi, L. A., Lorente, S., & dos Santos, E. D. (2022). Geometrical investigation of microchannel with two trapezoidal blocks subjected to laminar convective flows with and without boiling. Reports in Mechanical Engineering, 3(1), 20-36. https://doi.org/10.31181/rme200103020f
Feng, H., Sun, K., Chen, L., & Ge, Y. (2023). Constructal design of a nanofluid cooling channel with sidewall ribs and cavities in a rectangular heat generation body. Case Studies in Thermal Engineering, 41, 102640. https://doi.org/10.1016/j.csite.2022.102640
Feng, H., Zhang, Z., Chen, L., & Ge, Y. (2024). Constructal design for H-shaped compound heat transfer path in a rectangular heat generation body. International Journal of Heat and Mass Transfer, 225, 125442. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125442
Figueiredo, J., Simões, F., & da Costa, A. P. (2024). Unilateral buckling of thin plates by complementarity eigenvalue analyses. Thin-Walled Structures, 205, 112387. https://doi.org/10.1016/j.tws.2024.112387
Fragassa, C., Minak, G., & Pavlovic, A. (2020). Measuring deformations in the telescopic boom under static and dynamic load conditions. Facta Universitatis, Series: Mechanical Engineering, 18(2), 315-328. https://doi.org/10.22190/FUME181201001F
Ghorbanhosseini, S., Yaghoubi, S., & Bahrambeigi, M. R. (2021). A Comprehensive Study on the Effects of the Boundary Conditions on the Elastic Buckling Capacity of a Perforated Plate. International Journal of Advanced Design & Manufacturing Technology, 14(3). https://doi.org/10.30495/admt.2021.1914605.1227
Gonenli, C., & Das, O. (2022). Free vibration analysis of circular and annular thin plates based on crack characteristics. Reports in Mechanical Engineering, 3(1), 158-167. https://doi.org/10.31181/rme20016032022g
Gore, R., & Lokavarapu, B. R. (2022). Effect of Elliptical Cutout on Buckling Load for Isotropic Thin Plate. In Innovations in Mechanical Engineering: Select Proceedings of ICIME 2021 (pp. 51-69). Springer. https://doi.org/10.1007/978-981-16-7282-8_5
Guo, Y., & Yao, X. (2021). Buckling behavior and effective width design method for thin plates with holes under stress gradient. Mathematical Problems in Engineering, 2021(1), 5550749. https://doi.org/10.1155/2021/5550749
Helbig, D., Silva, C. C. C. d., Real, M. d. V., Santos, E. D. d., Isoldi, L. A., & Rocha, L. A. O. (2016). Study about buckling phenomenon in perforated thin steel plates employing computational modeling and constructal design method. Latin American Journal of Solids and Structures, 13(10), 1912-1936. https://doi.org/10.1590/1679-78252893
Hou, J., Guo, L., & Yan, J. (2021). Steel plate–restraining panel interaction behavior in buckling-restrained steel plate shear walls. Thin-Walled Structures, 169, 108348. https://doi.org/10.1016/j.tws.2021.108348
Hu, H.-S., Fang, P.-P., Liu, Y., Guo, Z.-X., & Shahrooz, B. M. (2020). Local buckling of steel plates in composite members with tie bars under axial compression. Engineering Structures, 205, 110097. https://doi.org/10.1016/j.engstruct.2019.110097
Ipek, C., Sofiyev, A., Fantuzzi, N., & Efendiyeva, S. P. (2023). Buckling Behavior of Nanocomposite Plates with Functionally Graded Properties under Compressive Loads in Elastic and Thermal Environments. Journal of Applied and Computational Mechanics, 9(4), 974-986. https://doi.org/10.22055/jacm.2023.43091.4019
Jin, Q., Leng, L., & Yang, S. (2024). Buckling analysis of composite plates surface bonded with graphene‐reinforced piezoelectric actuators. Polymer Composites, 45(2), 1793-1809. https://doi.org/10.1002/pc.27890
Jones, R. M. (2006). Buckling of bars, plates, and shells. Bull Ridge Corporation. https://books.google.com.pk/books?hl=en&lr=&id=UzVBr8b_jS8C&oi=fnd&pg=PR19&dq=Jones,+R.+M.+(2006).+Buckling+of+bars,+plates+and+shells.+Blacksburg:+Bull+Ridge+Publishing.&ots=Vu6-cpiJHM&sig=FKzPDWkPCL3k4T3agRIitvdM8iU&redir_esc=y#v=onepage&q&f=false
Kaveh, A., Dadras, A., & Geran Malek, N. (2019). Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms. Engineering with Computers, 35, 813-832. https://doi.org/10.1007/s00366-018-0634-2
Kaveh, A., Dadras, A., & Malek, N. G. (2018). Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm. Acta Mechanica, 229, 1551-1566. https://doi.org/10.1007/s00707-017-2068-0
Kucharski, D. M., Pinto, V. T., Rocha, L. A., Dos Santos, E. D., Fragassa, C., & Isoldi, L. A. (2022). Geometric analysis by constructal design of stiffened steel plates under bending with transverse I-shaped or T-shaped stiffeners. Facta Universitatis, Series: Mechanical Engineering, 20(3), 617-632. https://doi.org/10.22190/FUME211016070K
Liang, K., & Yin, Z. (2023). Investigation on nonlinear buckling performance of the optimized wing structure under the realistic flight cases. Aerospace Science and Technology, 139, 108416. https://doi.org/10.1016/j.ast.2023.108416
Lima, J. P. S., Cunha, M. L., dos Santos, E. D., Rocha, L. A. O., de Vasconcellos Real, M., & Isoldi, L. A. (2020). Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load. Engineering Structures, 203, 109883. https://doi.org/10.1016/j.engstruct.2019.109883
Liu, H., Xi, K., Xie, Z., Lu, Z., Chen, H., Zhang, J., & Ge, Y. (2023). Constructal design of double-layer asymmetric flower baffles. Energy, 280, 128254. https://doi.org/10.1016/j.energy.2023.128254
Lorente, S., Lee, J., & Bejan, A. (2010). The “flow of stresses” concept: the analogy between mechanical strength and heat convection. International Journal of Heat and Mass Transfer, 53(15-16), 2963-2968. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.038
Lu, Z., Xie, Z., Xi, K., Lin, D., Liu, H., Ge, Y., & Wu, F. (2024). Constructal evolutionary design of liquid cooling heat sink embedded in 3D-IC based on deep neural network prediction. International Communications in Heat and Mass Transfer, 152, 107273. https://doi.org/10.1016/j.icheatmasstransfer.2024.107273
Malikan, M., & Nguyen, V. B. (2018). A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law. World Journal of Engineering, 15(5), 633-645. https://doi.org/10.1108/WJE-11-2017-0357
Milazzo, A., Benedetti, I., & Gulizzi, V. (2018). An extended Ritz formulation for buckling and post-buckling analysis of cracked multilayered plates. Composite Structures, 201, 980-994. https://doi.org/10.1016/j.compstruct.2018.06.026
Milošević, M., Miltenović, A., Banić, M., & Tomić, M. (2017). Determination of residual stress in the rail wheel during quenching process by FEM simulation. Facta Universitatis, Series: Mechanical Engineering, 15(3), 413-425. https://doi.org/10.22190/FUME170206029M
Mishurenko, N., & Semenov, A. (2024). Influence of Discretely Introduced Cutouts on the Buckling of Shallow Shells with Double Curvature. Journal of Applied and Computational Mechanics, 10(1), 55-63. https://doi.org/10.22055/jacm.2023.44219.4182
Mitsui, K., Ikarashi, K., & Sada, K. (2024). Elastic Critical Buckling Coefficients for Skew Plates of Steel Structures under Biaxial Normal Stress. Buildings, 14(4), 901. https://doi.org/10.3390/buildings14040901
Mohammadzadeh, B., Choi, E., & Kim, W. J. (2018). Comprehensive investigation of buckling behavior of plates considering effects of holes. Struct. Eng. Mech, 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261
Moita, J. S., Araújo, A. L., Correia, V. F., Soares, C. M. M., & Herskovits, J. (2018). Material distribution and sizing optimization of functionally graded plate-shell structures. Composites Part B: Engineering, 142, 263-272. https://doi.org/10.1016/j.compositesb.2018.01.023
Musmar, M. A. (2021). A Parametric Study on the Buckling Behavior of Square Steel Plates under Uniaxial Compression. https://doi.org/10.13189/cea.2021.090717
Narayanan, R., & Chow, F.-Y. (1984). Strength of biaxially compressed perforated plates. https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1168&context=isccss
Nunes, B. R., Rodrigues, M. K., Oliveira Rocha, L. A., Labat, M., Lorente, S., dos Santos, E. D., Isoldi, L. A., & Biserni, C. (2021). Numerical‐analytical study of earth‐air heat exchangers with complex geometries guided by constructal design. International Journal of Energy Research, 45(15), 20970-20987. https://doi.org/10.1002/er.7157
Park, J.-S., & Yi, M.-S. (2024). Root Causes of Thin-Plate Buckling Damage at the Aft-End in Crude Oil Tanker and Verification through Buckling Analysis. Metals, 14(2), 158. https://doi.org/10.3390/met14020158
Pavlovic, A., & Fragassa, C. (2020). Geometry optimization by fem simulation of the automatic changing gear. Reports in Mechanical Engineering, 1(1), 199-205. https://doi.org/10.31181/rme200101199p
Pavlovic, A., Fragassa, C., & Minak, G. (2017). Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca. Tehnički vjesnik, 24(3), 729-735. https://doi.org/10.17559/TV-20160510143822
Piscopo, V. (2010). Refined buckling analysis of rectangular plates under uniaxial and biaxial compression. International Journal of Mechanical and Mechatronics Engineering, 4(10), 1018-1025. https://doi.org/10.5281/zenodo.1078458
Qablan, H. A., Rabab’ah, S., Alfoul, B. A., & Hattamleh, O. A. (2022). Semi-empirical buckling analysis of perforated composite panel. Mechanics Based Design of Structures and Machines, 50(8), 2635-2652. https://doi.org/10.1080/15397734.2020.1784198
Razera, A., da Fonseca, R., Isoldi, L., Dos Santos, E., Rocha, L., & Biserni, C. (2022). A constructal approach applied to the cooling of semi-elliptical blocks assembled into a rectangular channel under forced convection. International Journal of Heat and Mass Transfer, 184, 122293. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122293
Rocha, L., Santos, E. d., Cunha, D., Garcia, F., Lorenzini, G., Biserni, C., Letzow, M., Costa, J., Souza, J., & Isoldi, L. (2013). Constructal Design of Thermal Systems. Constructal Law and the Unifying Principle of Design, 295-321. https://doi.org/10.1007/978-1-4614-5049-8
Rocha, L. A., Lorente, S., & Bejan, A. (2018). Constructal theory in heat transfer. In Handbook of thermal science and engineering (pp. 329-360). Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_66-1
Saad-Eldeen, S., & Garbatov, Y. (2023). Experimental and Numerical Analysis of Structural Capacity of Perforated Stiffened Plates. Journal of Marine Science and Engineering, 11(4), 842. https://doi.org/10.3390/jmse11040842
Saad-Eldeen, S., Garbatov, Y., & Soares, C. G. (2018). Structural capacity of plates and stiffened panels of different materials with opening. Ocean Engineering, 167, 45-54. https://doi.org/10.1016/j.oceaneng.2018.08.013
Safaei, B., Onyibo, E. C., Goren, M., Kotrasova, K., Yang, Z., Arman, S., & Asmael, M. (2023). Free vibration investigation on RVE of proposed honeycomb sandwich beam and material selection optimization. Facta Universitatis, Series: Mechanical Engineering, 21(1), 031-050. https://doi.org/10.22190/FUME220806042S
Shahani, A. R., & Kiarasi, F. (2023). Numerical and Experimental Investigation on Post-buckling Behavior of Stiffened Cylindrical Shells with Cutout subject to Uniform Axial Compression. Journal of Applied and Computational Mechanics, 9(1), 25-44. https://doi.org/10.22055/jacm.2021.33649.2261
Shanmugam, N., & Narayanan, R. (1998). Ultimate Strength of Biaxially Loaded Plates. In Stability and Ductility of Steel Structures (SDSS'97) (pp. 211-223). Elsevier. https://doi.org/10.1016/B978-008043320-2/50020-4
Shanmugam, N., Thevendran, V., & Tan, Y. (1999). Design formula for axially compressed perforated plates. Thin-Walled Structures, 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4
Shojaee, T., Mohammadi, B., Madoliat, R., & Salimi-Majd, D. (2019). Development of a finite strip method for efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener. Composite Structures, 210, 538-552. https://doi.org/10.1016/j.compstruct.2018.11.007
Silveira, T., Pinto, V. T., Neufeld, J. P. S., Pavlovic, A., Rocha, L. A. O., Santos, E., & Isoldi, L. A. (2021). Applicability evidence of constructal design in structural engineering: Case study of biaxial elasto-plastic buckling of square steel plates with elliptical cutout. Journal of Applied and Computational Mechanics, 7(2), 922-934. https://doi.org/10.22055/jacm.2021.35385.2647
Skripnyak, V. A., Iokhim, K., Skripnyak, E., & Skripnyak, V. V. (2021). Modeling of titanium alloys plastic flow in linear friction welding. Facta Universitatis, Series: Mechanical Engineering, 19(1), 091-104. https://doi.org/10.22190/FUME201225014S
Szilard, R. (2004). Theories and applications of plate analysis: classical, numerical and engineering methods. Appl. Mech. Rev., 57(6), B32-B33. https://doi.org/https://books.google.com.pk/books/about/Theories_and_Applications_of_Plate_Analy.html?id=Hd3kQURHXcoC&redir_esc=y
Trahair, N. S., Bradford, M., Nethercot, D., & Gardner, L. (2017). The behaviour and design of steel structures to EC3. CRC Press. https://doi.org/10.1201/9781315273518
Uslu, F., Saraçoğlu, M. H., & Albayrak, U. (2022). Buckling of square and circular perforated square plates under uniaxial loading. Journal of Innovations in Civil Engineering and Technology, 4(2), 61-75. https://dergipark.org.tr/en/pub/jiciviltech/issue/74932/1190956
Wang, M., Chen, Y., Gao, W., Li, Z., & Zhang, J. (2024). Theoretical and numerical study of the buckling of steel-composite cylindrical shells under axial compression. Applied Ocean Research, 153, 104221. https://doi.org/10.1016/j.apor.2024.104221
Yuan, T., Yang, Y., Kong, X., & Wu, W. (2021). Similarity criteria for the buckling process of stiffened plates subjected to compressive load. Thin-Walled Structures, 158, 107183. https://doi.org/10.1016/j.tws.2020.107183
Zhang, Q., & Sun, Y. (2023). Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio. Applied Mathematics and Mechanics, 44(9), 1457-1486. https://doi.org/10.1007/s10483-023-3024-6
Zhang, Z., Feng, H., Chen, L., & Ge, Y. (2021). Multi-objective constructal design for compound heat dissipation channels in a three-dimensional trapezoidal heat generation body. International Communications in Heat and Mass Transfer, 127, 105584. https://doi.org/10.1016/j.icheatmasstransfer.2021.105584
Zhang, Z., Ye, J., Huang, Z., Qin, G., & Xu, S. (2022). Elastic buckling behavior of corroded uniformly compressed plates with three simply supported edges. Structures,
Zureick, A.-H. (2018). On the buckling of an isotropic rectangular plate uniformly compressed on two simply supported edges and with two free unloaded edges. Thin-Walled Structures, 124, 180-183. https://doi.org/10.1016/j.tws.2017.12.012
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Reports in Mechanical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.