Some remarks on the two-dimensional contact of dissimilar elastic solids under non-slipping boundary conditions
DOI:
https://doi.org/10.31181/rme040129112023hKeywords:
Contact mechanics, Non-slipping contact, Interface mismatch eigenstrain, Similarity approach, Partial slip, Singular integral equations, Dissimilar elastic materialsAbstract
Spence's self-similarity approach is often preferred to an incremental method for solving plane, non-slipping normal contacts of dissimilar elastic solids under progressive loading. The number of plane contact problems solved in this way so far is nevertheless very limited, since explicit expressions especially for the pressure distribution and the tangential tractions within the contact area require the solution of complicated singular integral equations. In contrast, the application of the incremental method leads to much simpler integral equations, which are derived here and applied to solve some new non-slipping contact problems including the one characterized by an initial power-law gap profile function. The incremental method is also capable to determine the so-called interface mismatch eigenstrain. In Spence's method, however, the determination of its magnitude represents a mandatory step within the solution procedure. By means of a comprehensive comparison of both methods this work provides new insights into the solution of non-slipping plane normal contact problems including explicit analytical solutions for the interface mismatch eigenstrain.
References
Abramov, B. M. (1937). The problem of contact of an elastic infinite half-plane with an absolutely rigid rough foundation. Comptes Rendus de l'Académie des Sciences de l'URSS, 17, 173–178.
Barber, J. R. (2018). Contact mechanics. Springer, (Chapter 7). https://doi.org/10.1007/978-3-319-70939-0_7
Borodich, F. M., Galanov, B. A., & Suarez-Alvarez, M. M. (2014). The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. Journal of the Mechanics and Physics of Solids, 68, 14–32. https://doi.org/10.1016/j.jmps.2014.03.003
Bufler, H. (1959). Einige strenge Lösungen für den Spannungszustand in ebenen Verbundkörpern. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, 39(5‐6), 218–236. https://doi.org/10.1002/zamm.19590390507
Chen, S., & Gao, H. (2006). Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2065), 211–228. https://doi.org/10.1098/rspa.2005.1553
Chen, S., & Gao, H. (2007). Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 55(5), 1001–1015. https://doi.org/10.1016/j.jmps.2006.10.008
de Payrebrune, K. M. (2022). Relation of kinematics and contact forces in three-body systems with a limited number of particles. Facta Universitatis, Series: Mechanical Engineering, 20(1), 095–108. https://doi.org/10.22190/FUME210310035P
Guo, X., Jin, F., & Gao, H. (2011). Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space. International Journal of Solids and Structures, 48(18), 2565–2575. https://doi.org/10.1016/j.ijsolstr.2011.05.008
Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. (8th ed.). Academic press. https://doi.org/10.1016/C2010-0-64839-5
Heß, M. (2011). Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension. Cuvillier Verlag. Göttingen.
Jäger, J. (2005). New Solutions in Contact Mechanics. WIT Press. Southampton, Boston.
Johnson, K. L. (1985). Contact Mechanics. Cambridge University Press. Cambridge.
Li, Q. (2020). Simulation of a single third-body particle in frictional contact. Facta Universitatis, Series: Mechanical Engineering, 18(4), 537–544. https://doi.org/10.22190/FUME201002045L
Luo, Q. H., & Zhou, Y. T. (2022). Adhesive contact behavior between piezoelectric and elastic materials with a mismatch strain. Acta Mechanica, 233(2), 617–639. https://doi.org/10.1007/s00707-021-03120-3
Ma, L., & Korsunsky, A. M. (2012). Complex variable formulation for non-slipping plane strain contact of two elastic solids in the presence of interface mismatch eigenstrain. International Journal of Solids and Structures, 49(9), 1177–1188. https://doi.org/10.1016/j.ijsolstr.2012.02.002
Ma, L., & Korsunsky, A. M. (2022). Interface mismatch eigenstrain of non-slipping contacts between dissimilar elastic solids. International Journal of Solids and Structures, 253, 111760. https://doi.org/10.1016/j.ijsolstr.2022.111760
Mossakovskii, V. I. (1963). Compression of elastic bodies under conditions of adhesion (axisymmetric case). Journal of Applied Mathematics and Mechanics, 27(3), 630–643. https://doi.org/10.1016/0021-8928(63)90150-3
Nowell, D., Hills, D. A., Sackfield, A. (1988). Contact of dissimilar elastic cylinders under normal and tangential loading. Journal of the Mechanics and Physics of Solids, 36(1), 59–75. https://doi.org/10.1016/0022-5096(88)90020-8
Popov, G. I. (1973). Axisymmetric contact problem for an elastic inhomogeneous half-space in the presence of cohesion. Journal of Applied Mathematics and Mechanics, 37(6), 1052–1059. https://doi.org/10.1016/0021-8928(73)90070-1
Popov, V. L., & Heß, M. (2015). Method of dimensionality reduction in contact mechanics and friction. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-53876-6
Popov, V. L., Heß, M., & Willert, E. (2019). Handbook of contact mechanics: exact solutions of axisymmetric contact problems. Springer Nature. https://doi.org/10.1007/978-3-662-58709-6
Söhngen, H. (1954). Zur Theorie der endlichen Hilbert-Transformation. Mathematische Zeitschrift, 60, 31–51. https://doi.org/10.1007/BF01187356
Spence, D. A. (1968). Self similar solutions to adhesive contact problems with incremental loading. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 305(1480), 55–80. https://doi.org/10.1098/rspa.1968.0105
Spence, D. A. (1973). An eigenvalue problem for elastic contact with finite friction. In Mathematical Proceedings of the Cambridge Philosophical Society, 73(1), 249–268. https://doi.org/10.1017/S0305004100047666
Zhupanska, O. I., & Ulitko, A. F. (2005). Contact with friction of a rigid cylinder with an elastic half-space. Journal of the Mechanics and Physics of Solids, 53(5), 975–999. https://doi.org/10.1016/j.jmps.2005.01.002
Zhupanska, O. I. (2009). Axisymmetric contact with friction of a rigid sphere with an elastic half-space. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2108), 2565–2588. https://doi.org/10.1098/rspa.2009.0109
Zhupanska, O. I. (2012). Adhesive full stick contact of a rigid cylinder with an elastic half-space. International Journal of Engineering Science, 55, 54–65. https://doi.org/10.1016/j.ijengsci.2012.02.002
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Reports in Mechanical Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.