Stress tensor in the linear viscoelastic incompressible half-space beneath axisymmetric bodies in normal contact

Authors

  • Jean-Emmanuel Leroy Technical University Berlin, Germany
  • Valentin L. Popov Technical University Berlin, Germany

DOI:

https://doi.org/10.31181/rme040130112023p

Keywords:

Stress state, Viscoelasticity, Normal contact, Method of dimensionality reduction, Hydrostatic pressure gradient

Abstract

We present a simple method to determine the stress state in a linear viscoelastic half-space in frictionless unilateral normal contact with an axisymmetric rigid indenter for arbitrary loading histories. The procedure consists in the superposition of elastic solutions for flat punch or parabolic contact along the line load within the framework of the method of dimensionality reduction. We provide simple expressions for all stress components and the hydrostatic pressure gradient, which is of particular interest in the biomechanical field. The method brings advantages especially in its numerical application, since no convolution in time over the entire contact history is necessary.

References

Argatov II and Popov VL (2016) Rebound indentation problem for a viscoelastic half-space and axisymmetric indenter - solution by the method of dimensionality reduction. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik 96(8): 956–967. DOI:10.1002/zamm.201500144.

Forsbach F (2020) Stress tensor and gradient of hydrostatic pressure in the half-space beneath axisymmetric bodies in normal and tangential contact. Frontiers in Mechanical Engineering 6. DOI:10.3389/fmech2020.00039.

Graham G (1965) The contact problem in the linear theory of viscoelasticity. International Journal of Engineering Science 3(1): 27–46. DOI:10.1016/0020-7225(65)90018-2.

Graham G (1967) The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number of maxima and minima. International Journal of Engineering Science 5(6): 495–514. DOI:10.1016/0020-7225(67)90037-7.

Hamilton GM (1983) Explicit equations for the stresses beneath a sliding spherical contact. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 197(1): 53–59. DOI:10.1243/PIME-PROC-1983-197-076-02.

Huber MT (1904) Zur Theorie der Ber¨uhrung fester elastischer K¨orper. Annalen der Physik 319(6): 153–163. DOI:10.1002/andp.19043190611.

Hunter SC (1960) The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. Journal of the Mechanics and Physics of Solids 8(4): 219–234. DOI:10.1016/0022-5096(60)90028-4.

Lee EH (1955) Stress analysis in visco-elastic bodies. Quarterly of Applied Mathematics 13(2): 183–190. DOI:10.1090/qam/69741.

Lee EH and Radok JRM (1960) The contact problem for viscoelastic bodies. Journal of Applied Mechanics 27(3): 438–444. DOI:10.1115/1.3644020.

Leroy JE (2023) Articular cartilage growth and self-maintenance – biological background and mechanical modelling. In: Mitrovi´c S (ed.) SERBIATRIB’23,18th International Conference on Tribology, 17-19 May 2023, Kragujevac, Serbia. Kragujevac: University of Kragujevac and Serbian Tribology Society, pp. 684–693.

Popov VL (2021) Energetic criterion for adhesion in viscoelastic contacts with non-entropic surface interaction. Reports in Mechanical Engineering 2(1): 57–64. DOI:10.31181/rme200102057p.

Popov VL and Hes M(2014) Method of Dimensionality Reduction in Contact Mechanics and Friction. Berlin, Heidelberg: Springer Berlin Heidelberg. DOI:10.1007/978-3-642-53876-6.

Popov VL, Hes M and Willert E (2019) Handbook of contact mechanics: Exact solutions of axisymmetric contact problems. Open. Berlin and Heidelberg: Springer. DOI:10.1007/978-3-662-58709-6.

Popov VL, Poliakov A and Pakhaliuk V (2022) One-dimensional biological model of synovial joints egenerative rehabilitation in osteoarthritis. Facta Universitatis, Series: Mechanical Engineering 20(2): 421–444. DOI:10.22190/FUME220203014P.

Popov VL,Willert E and HesM(2018) Method of dimensionality reduction in contact mechanics and friction: A user’s handbook. iii. viscoelastic contacts. Facta Universitatis, Series: Mechanical Engineering 16(2): 99–113. DOI:10.22190/FUME180327013P.

Radok JRM (1957) Visco-elastic stress analysis. Quarterly of Applied Mathematics 15(2): 198–202. DOI: 10.1090/qam/92453.

Ting TCT (1966) The contact stresses between a rigid indenter and a viscoelastic half-space. Journal of Applied Mechanics 33(4): 845–854. DOI:10.1115/1.3625192.

Ting TCT (1968) Contact problems in the linear theory of viscoelasticity. Journal of Applied Mechanics 35(2): 248–254. DOI:10.1115/1.3601188.

Willert E (2020) Stosprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen. Berlin, Heidelberg: Springer Berlin / Heidelberg. DOI:10.1007/978-3-662-60296-6.

Willert E (2021a) Determination of the stress state beneath arbitrary axisymmetric tangential contacts in Hertz-Mindlin approximation based on the superposition of solutions for parabolic contact. URL https://arxiv.org/pdf/2108.04617v1.

Willert E (2021b) FFT-based implementation of the MDR transformations for homogeneous and power-law graded materials. Facta Universitatis, Series: Mechanical Engineering 19(4): 805–816. DOI:10.22190/FUME210415057W.

Willert E (2023) Elastic stress field beneath a sticking circular contact under tangential load. URL https: //arxiv.org/pdf/2310.03508v1.

Published

2023-11-29

How to Cite

Stress tensor in the linear viscoelastic incompressible half-space beneath axisymmetric bodies in normal contact. (2023). Reports in Mechanical Engineering, 4(1), 310-316. https://doi.org/10.31181/rme040130112023p