Multiplicative method based on expected criteria values
DOI:
https://doi.org/10.31181/rme040130112023zKeywords:
Decision making, Multi-criteria analysis, Aggregation operator, Additive method, Multiplicative method, Alternative, Criteria WeightAbstract
When making a choice, there is a tendency to make the decision-making process as efficient as possible. The choice of method depends on the type of problem to be solved, but it also depends on the knowledge and experience of the decision maker in the field of multi-criteria analysis. The aim of this paper is to show how an additive multi-criteria decision-making model can be naturally converted into a multiplicative one. In this way, it is possible for the decision-maker to choose between additive and multiplicative approaches as suits him better. The paper introduces methodology and provides an algorithm for construction of multiplicative MCDM model based on aggregation function introduced by Žižović et al. (2016). The concept of ratio of the expected alternative value with respect to the ideal value and to anti-ideal value, for all criteria, are introduced and based on these relations, weighted coefficients for multiplicative method are given. Also, we provide a normalization method for multiplicative MCDM method based on values from decision matrix.
References
Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16 (1), 5-24.
Dubois, D., Fargier, H., & Perny, P. (2003). Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Artificial Intelligence, 148, 219-260.
Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Verlag, eBook ISBN 978-0-387-23081-8.
Grabisch, M., Marichal, J.L., Mesiar, R., & Pap, E. (2011). Aggregation functions: Means. Information Sciences, 181 (1), 1-22.
Greco, S., Ehrgott, M., & Figueira, J. (2018). Multiple criteria decision analysis: state of the art surveys. New York: Springer-Verlag, ISBN 978-1-4939-3093-7.
Hwang, C.L., & Yoon, K. (1981). Multiple attribute decision making methods and applications: state of the art survey. Berlin, Heidelberg: Springer, ISBN 978-3-540-10558-9.
Jafarzadeh Ghoushchi, S., & Sarvi, S. (2023). Prioritizing and Evaluating Risks of Ordering and Prescribing in the Chemotherapy Process Using an Extended SWARA and MOORA under Fuzzy Z-numbers. Journal of Operations Intelligence, 1(1), 44-66. https://doi.org/10.31181/jopi1120238
Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials and Design, 65, 335–342.
Keeney, A., & Raiffa, H., (1976). Decision with multiple objectives. Wiley, New York, ISBN 9780521438834.
Kiptum, C. K. ., Mouhamed Bayane Bouraima, Ibrahim Badi, Babatounde Ifred Paterne Zonon, Kevin Maraka Ndiema, & Yanjun Qiu. (2023). Assessment of the Challenges to Urban Sustainable Development Using an Interval-Valued Fermatean Fuzzy Approach. Systemic Analytics, 1(1), 11-26.
Köksalan, M., Wallenius, J., & Zionts, S. (2011). Multiple Criteria Decision Making: From Early History to the 21st Century. Singapore: World Scientific, ISBN 9789814335591.
Mardani, A., Jusoh, A., Zavadskas, E. K., Khalifah, Z., & Md Nor, K. (2015). Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: a systematic review of the literature. Journal of Business Economics and Management, 16 (5), 1034-1068.
Milićević, M. R., & Župac, G. Ž. (2012). Objektivni pristup određivanju težina kriterijuma. Vojnotehnički glasnik, 60 (1), 39-56.
Milićević, M. R., & Župac, G. Ž. (2012). Subjective approach to the determination of criteria weights. Military Technical Courier, LX (2), 48-70.
Mukhametzyanov, I. Z. (2023). Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems. Springer. International Series in Operations Research & Management Science, ISBN 978-3-031-33837-3 (ebook).
Nezhad, M. Z., Nazarian-Jashnabadi , J. ., Rezazadeh, J. ., Mehraeen, M. ., & Bagheri, R. . (2023). Assessing Dimensions Influencing IoT Implementation Readiness in Industries: A Fuzzy DEMATEL and Fuzzy AHP Analysis. Journal of Soft Computing and Decision Analytics, 1(1), 102-123. https://doi.org/10.31181/jscda11202312
Nikolić, I., & Borović, S. (1996). Višekriterijumska optimizacija. Centar vojnih škola Vojske jugoslavije, Beograd.
Pamučar, D., Stević, Ž., & Sremac, S. (2018). A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10 (9), p. 393.
Saaty, T.L., (1980). Analytic Hierarchy Process. McGraw-Hill, New York.
Stanujkić, D., Đorđević, B., & Đorđević, M. (2013). Comparative analysis of some prominent MCDM methods: A case of ranking Serbian banks. Serbian Journal of Management, 8 (2), 213-241.
Vahidinia, A., & Hasani, A. (2023). A Comprehensive Evaluation Model for Smart Supply Chain Based on The Hybrid Multi-Criteria Decision-Making Method. Journal of Soft Computing and Decision Analytics, 1(1), 219-237. https://doi.org/10.31181/jscda11202313
Yazdani, M., Wen, Z., Liao, H., Banaitis, A., & Turskis, Z. (2019). A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. Journal of Civil Engineering and Management. 25 (8), 858-874.
Younis Al-Zibaree, H. K. ., & Konur, M. . (2023). Fuzzy Analytic Hierarchal Process for Sustainable Public Transport System. Journal of Operations Intelligence, 1(1), 1-10. https://doi.org/10.31181/jopi1120234
Zavadskas, E. K., Govindan, K., Autucheviciaene, J., & Turskis, Z., (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research- Ekonomska Istraživanja, 29 (1), 857-887.
Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Elektronika ir Elektrotechnika, 122 (6), 3-6.
Žižović, M. M., Damljanović, N., & Žižović, M. R. (2016). Multiplicative multi-criteria analysis method for decision-making. Maejo International Journal of Science and Technology. 10 (02), 233-241.
Žižović, M., & Damljanović, N. (2015). Analysis of an Application of Entropy Method, Mathematical Modeling, Optimization and Information Technology. LAMBERT Academic Publishers. Germany. 6-14 (ISBN 978-3-659-71422-1).
Žižović, M., & Pamucar, D. (2019). New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decision Making: Applications in Management and Engineering. 2 (2), 126-137.
Žižović, M., Miljković, B., & Marinković, D. (2020). Objective methods for determining criteria weight coefficients: A modification of the CRITIC method. Decision Making: Applications in Management and Engineering. 3 (2), 149-161.
Žižović, M., Pamučar, D., Ćirović, G., Žižović, M. M., & Miljković, B. D. (2020). A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL). Mathematics. 8 (5), p. 745.
Žižović, M., Pamučar, D., Stanković, M., Đurčić, D., & Žižović, M. M. (2021). Concept for determining weight coefficients of criteria based on the entropy method. XLVIII SY-OP-IS 2021. Banja Koviljača Proceedings. 695-700.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Reports in Mechanical Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.