Insights about aliasing and spectral leakage when analyzing discrete-time finite viscoelastic functions
DOI:
https://doi.org/10.31181/rme040129072023lgAbstract
Material property viscoelastic inversion studies often rely on the continuous -time framework for Fourier analysis, which may not accurately represent real experimentally collected data. In this paper, we address the discrete and finite nature of viscoelastic functions obtained from experiments and discuss the impact of these characteristics on the frequency spectrum analysis. We derive equations for the Discrete-Time Fourier Transform (DTFT) of a discrete-finite stress relaxation signal corresponding to the relaxation of a generalized Maxwell model. Our analysis highlights the limitations of the traditional continuous -time framework in capturing the inherent features of real signals, which are discrete and finite in nature. This results in two phenomena: aliasing and spectral leakage. We present equations that consider these phenomena, allowing experimentalists to anticipate and account for aliasing and leakage when performing model fitting. The proposed discrete-finite approach provides a more accurate representation of real viscoelastic data, enabling researchers to make better-informed decisions in the analysis and interpretation of sample viscoelastic functions.
References
Dittmer, J. J.; Lazzaroni, R.; Leclère, P.; Moretti, P.; Granström, M.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Brédas, J. L.; Rost, H.; Holmes, A. B. Sol. Energy Mater. Sol. Cells 2000, 61, 53–61. doi:10.1016/S0927-0248(99)00096-3
Plodinec, M.; Loparic, M.; Monnier, C. A.; Obermann, E. C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J. T.; Aebi, U.; Bentires-Alj, M.; Lim, R. Y. H.; Schoenenberger, C.-A. Nat. Nanotechnol. 2012, 7, 757–765. doi:10.1038/nnano.2012.167
Bruner, C.; Dauskardt, R. Macromolecules 2014, 47, 1117–1121. doi:10.1021/ma402215j
López-Guerra, E. A.; Shen, H.; Solares, S. D.; Shuai, D. Nanoscale 2019, 11, 8918–8929. doi:10.1039/C8NR10287B
Garcia, P. D.; Guerrero, C. R.; Garcia, R. Nanoscale 2020, 12, 9133–9143. doi:10.1039/C9NR10316C
Brinson, H. F.; Brinson, L. C. Polymer Engineering Science and Viscoelasticity; Springer US: Boston, MA, 2008. doi:10.1007/978-0-387-73861-1
Ferry, J. D. Viscoelastic Properties of Polymers, 3d ed.; Wiley: New York, 1980
Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction; Springer-Verlag: Berlin ; New York, 1989
Findley, W. N.; Lai, J. S.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity; Dover books on engineering; Dover: New York, 1989
López-Guerra, E. A.; Eslami, B.; Solares, S. D. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 804–813. doi:10.1002/polb.24327
Zhai, M.; McKenna, G. B. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 633–639. doi:10.1002/polb.23470
McCraw, M.; Uluutku, B.; Solares, S. Rep. Mech. Eng. 2021, 2, 156–179. doi:10.31181/rme200102156m
Geri, M.; Keshavarz, B.; Divoux, T.; Clasen, C.; Curtis, D. J.; McKinley, G. H. Phys. Rev. X 2018, 8, 041042. doi:10.1103/PhysRevX.8.041042
Evans, R. M. L.; Tassieri, M.; Auhl, D.; Waigh, T. A. Phys. Rev. E 2009, 80, 012501. doi:10.1103/PhysRevE.80.012501
Tassieri, M.; Evans, R. M. L.; Warren, R. L.; Bailey, N. J.; Cooper, J. M. New J. Phys. 2012, 14, 115032. doi:10.1088/1367-2630/14/11/115032
Holly, E. E.; Venkataraman, S. K.; Chambon, F.; Henning Winter, H. J. Non-Newton. Fluid Mech. 1988, 27, 17–26. doi:10.1016/0377-0257(88)80002-8
Lyons, R. G. Understanding Digital Signal Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, 2011
Oppenheim, A. V.; Schafer, R. W.; Buck, J. R. Discrete-Time Signal Processing, 2nd ed.; Prentice Hall: Upper Saddle River, N.J, 1999
Oppenheim, A. V.; Schafer, R. W. Digital Signal Processing; Prentice-Hall: Englewood Cliffs, N.J, 1975
McClellan, J. H.; Schafer, R. W.; Yoder, M. A. Signal Processing First, International ed.; Pearson Education: Hemel Hempstead, 2003
Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing, 1st ed.; California Technical Pub: San Diego, Calif, 1997
Aspden, R. M. J. Phys. Appl. Phys. 1991, 24, 803–808. doi:10.1088/0022-3727/24/6/002
Shtrauss, V. WSEAS Trans. Appl. Theor. Mech. 2019, 14, 212–221
Shtrauss, V.; Kalpins, A. WSEAS Trans. Appl. Theor. Mech. 2012, 7, 29–38
Uluutku, B.; López-Guerra, E. A.; Solares, S. D. Beilstein J. Nanotechnol. 2021, 12, 1063–1077. doi:10.3762/bjnano.12.79
Uluutku, B.; McCraw, M. R.; Solares, S. D. J. Appl. Phys. 2022, 131, 165101. doi:10.1063/5.0088523
McCraw, M. R.; Uluutku, B.; Solomon, H. D.; Anderson, M. S.; Sarkar, K.; Solares, S. D. 2022. doi:10.48550/ARXIV.2210.00617
Lin, L.; McCraw, M. R.; Uluutku, B.; Liu, Y.; Yan, D.; Soni, V.; Horkowitz, A.; Yao, X.; Limanowski, R.; Solares, S. D.; Beilis, I. I.; Keidar, M. Langmuir 2023. doi:10.1021/acs.langmuir.2c03181
The US Small Business Administration. https://www.sbir.gov/node/2291769
Park, S. W.; Schapery, R. A. Int. J. Solids Struct. 1999, 36, 1653–1675. doi:10.1016/S0020-7683(98)00055-9
Schapery, R. A.; Park, S. W. Int. J. Solids Struct. 1999, 36, 1677–1699. doi:10.1016/S0020-7683(98)00060-2
Forstenhäusler, M.; López-Guerra, E. A.; Solares, S. D. Facta Univ. Ser. Mech. Eng. 2021, 19, 133–153
Kreyszig, E. Advanced Engineering Mathematics, 8th ed.; Wiley: New York, 1999
Uluutku, B. Developments for Soft-Matter Characterization in Atomic Force Microscopy. PhD Thesis, The George Washington University, 2022
Cooley, J. W.; Tukey, J. W. Math. Comput. 1965, 19, 297–301. doi:10.1090/S0025-5718-1965-0178586-1
Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P. Nat. Methods 2020, 17, 261–272. doi:10.1038/s41592-019-0686-2
Catsiff, E.; Tobolsky, A. V. J. Colloid Sci. 1955, 10, 375–392. doi:10.1016/0095-8522(55)90052-0
Lopez-Guerra, E. A. Ealopez/DTFT_viscoelasticity, 2023. (https://github.com/ealopez/DTFT_viscoelasticity)
Newville, M.; Stensitzki, T.; Allen, D. B.; Rawlik, M.; Ingargiola, A.; Nelson, A. Astrophys. Source Code Libr. 2016, ascl:1606.014