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In many structural engineering applications, perforated thin plates are commomly 
required, such as for cable and pipe passages or inspection windows, among other. 
It is well known that thin plates subjected to compressive loads may experience a 
structural instability called buckling, characterized by sudden out-of-plane 
displacements. To investigate this phenomenon and determine the optimal 
geometry of a thin steel plate featuring a centered elliptical opening, the 
Constructal Design (CD) method was applied in combination with the Exhaustive 
Search (ES) approach and the Finite Element Method (FEM). The CD method 
facilitates assessing geometric configurations to achieve the most effective 
distribution of imperfections, thereby maximizing the performance indicator 
relevant to this solid mechanics analysis. From the results of around 700 cases 
numerically simulated, it was observed that incorporating perforations impacts 
the mechanical strength of the plate by up to 62.5% when compared to an 
unperforated plate of identical dimensions (considered as a reference plate). In 
addition, plates without cutouts (reference plate), with different aspect ratios, the 
same thickness, the same amount of material, and the same normalized ultimate 
stress, can exhibit deflections with a difference of up to 229.4%. 
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1. Introduction 
Engineering structures are constantly evolving to provide better performances, maximizing variables like rigidity, 

strength, and stability, and minimizing costs and weight, among others. One of the most used components of structural 
engineering is the thin plate, with a wide application in civil, naval, aerospace, and automotive engineering. Thin 
plates are characterized by having in-plane dimensions much bigger than its thickness, t (Jones, 2006). In many 
practical applications, perforations in the plate are necessary (for purposes such as inspection, assembly, 
accommodating pipes, or reducing weight), which alters its mechanical behavior due to stress redistribution around 
the hole. (Shojaee et al., 2019). Tipically, these structures are subjected to compressive loads, which can cause the 
instability phenomenon known as buckling. According to Chajes and Åkesson, a thin plate does not collapse 
immediately after elastic buckling occurs, but it can sustain loads significantly higher than the critical load without 
experiencing excessive deformation (Åesson, 2014; Chajes, 1974). When it occurs, the load that defines the collapse 
of a plate, considering the elasto-plastic behavior, is called the ultimate or post-critical load and Pu represents it.  
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Since elasto-plastic buckling analysis of perforated plates is a complex task, the use of experimental or 
computational techniques is required. One of the most useful tools for this type of investigation is computational 
modeling via Finite Element Method (FEM), which can solve these problems with good accuracy and in various 
situations in a relatively short time compared to experimental methods. In addition, analytical solutions are mainly 
applied for very simple problems while experimental approach has the highest costs when compared to FEM. 
According to Liang and Yin the nonlinear finite element simulation is a standard technique for structural stability 
analysis, especially for large and complex structures (Liang & Yin, 2023). The significance and current relevance of 
this topic are underscored by numerous recent publications, including works by Qablan et al., Ghorbanhosseini et al., 
Guo and Yao, Musmar, Gore and Lokavarapu, Uslu et al., Zhang et al., Ipek et al., Saad-Eldeen and Garbatov, Shahani 
and Kiarasi, Cao et al., Figueiredo et al., Mishurenko and Semenov, Mitsui et al., and Wang et al. (Cao et al., 2024; 
Figueiredo, Simões, & da Costa, 2024; Ghorbanhosseini, Yaghoubi, & Bahrambeigi, 2021; Gore & Lokavarapu, 2022; 
Guo & Yao, 2021; Ipek et al., 2023; Mishurenko & Semenov, 2024; Mitsui, Ikarashi, & Sada, 2024; Musmar, 2021; 
Qablan et al., 2022; Saad-Eldeen & Garbatov, 2023; Shahani & Kiarasi, 2023; Uslu, Saraçoğlu, & Albayrak, 2022; 
Wang et al., 2024; Zhang et al., 2022). In this context, the present work seeks to optimize the geometries of centered 
elliptical perforations that provide the best mechanical behavior of simply-supported thin perforated steel plates when 
subjected to biaxial elasto-plastic buckling. For that, the FEM was used associated with the Constructal Design method 
(CD) and Exhaustive Search technique (ES).  The CD is the method used to predict the evolutionary design and rhythm 
in any finite-size flow system, including nature, social, and engineering applications. It is used to demonstrate how 
the Constructal Law of design and evolution guides the design and its evolution over time (Rocha, Lorente, & Bejan, 
2018). 

The method uses constraints and degrees of freedom to define the search space for a geometric investigation, i.e., 
to define possible different geometric configurations for an engineering system, and performance indicators to identify 
how the design easily the internal currents (dos Santos et al., 2017). Therefore, all proposed geometries are analyzed 
regarding their performance through the comparison among the results numerically obtained by FEM, characterizing 
an optimization by ES technique. It is important to inform that the effectiveness of FEM, CD, and ES association to 
solve structural engineering problems was already proved by Da Silveira et al. (da Silveira et al., 2022). Given the 
above, the main original contribution of this work is the application of the CD method together with the ES technique 
and the FEM to understand the effects of the semi-axes ratio of the elliptical hole and the inclination angle of the 
cutout on the mechanical behavior of thin perforated steel plates with distinct aspect ratios and subjected to biaxial 
elasto-plastic buckling. To this end, a computational model was properly developed, verified, and validated to solve 
the complex phenomenon on biaxial elasto-plastic buckling of plates (with or without perforations), which is also a 
relevant scientific contribution to the state of the art. It is relevant to note that the adoption of the ES technique together 
with the CD method is a widely used approach because, in this way, it is possible not only to determine the optimal 
geometry, but also to evaluate and understand how the degrees of freedom influence the performance indicators. 
Several other potential optimization techniques allow obtaining the optimal geometry; however, this definition is 
reached without clearly understanding about the effect of the degrees of freedom variation on the performance 
indicators.  

In addition, the ES technique was specifically chosen for this study due to its comprehensive nature, ensuring that 
“all” possible geometric configurations be explored to guarantee an optimal solution. While other optimization 
techniques, such as Genetic Algorithms or Particle Swarm Optimization, may offer faster results for large-scale 
problems, they can sometimes miss global optima or become overly dependent on initial conditions or parameter 
settings. In contrast, ES provides a complete evaluation of the solution space, which was crucial for our objective of 
obtaining precise and reliable results in the context of structural optimization. In summary, the following advantages 
of the ES technique can be highlighted: i) it ensures that the absolute best solution is identified by evaluating every 
possible configuration, unlike heuristic methods (e.g., Genetic Algorithms, Simulated Annealing), which may only 
find a near-optimal solution; ii) it is straightforward and easy to understand, making it accessible for researchers and 
practitioners without the need for deep knowledge of complex algorithms or parameter tuning; iii) it produces 
consistent results, as it does not rely on randomness or probabilistic processes, which can lead to varying outcomes in 
stochastic optimization techniques; iv) it does not require specific assumptions about the problem structure or solution 
landscape, making it applicable to a wide range of optimization problems without extensive customization; and v) it 
can be highly efficient for problems with a limited number of variables or configurations, providing a comprehensive 
analysis without the risk of missing critical solutions. However, if the goal is only to define the optimized geometry, 
without interest in understanding how this geometry was obtained, there is no need to use the ES (other optimization 
method can be employed). Therefore, the association of the CD with ES brings as main benefit the possibility of 
understand how the evolution of the geometric configuration, performed by the degrees of freedom variation, affect 
the performance indicators in such a way to obtain the best and the worst geometries. 
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2. Buckling and Post-Buckling Behavior of Plates 
When subjected to compressive loads, slender mechanical structures can fail due to the buckling occurrence and, 

therefore, must be designed to avoid the failure caused by this undesirable instability phenomenon (Åesson, 2014; 
Chajes, 1974; Jones, 2006; Szilard, 2004). Although most structures, such as columns, have their failure determined 
by elastic buckling, for flat plates, a post-buckling behavior occurs for loads over the critical load of elastic buckling 
because it is a peculiar behavior of thin plates (Szilard, 2004; Trahair et al., 2017). Recent studies have explored 
various aspects of the buckling phenomenon in plates. Notable examples include Saad-Eldeen et al., who conducted 
experimental analyses on perforated plates with and without stiffeners under uniaxial buckling conditions, and Dong 
et al., who investigated local buckling in thin plates on tensionless elastic foundations subjected to combined uniaxial 
compression and shear (Dong et al., 2018; Saad-Eldeen, Garbatov, & Soares, 2018). Additionally, Milazzo et al. 
developed a single-domain model for the buckling and post-buckling behavior of cracked multilayered composite 
plates (Milazzo, Benedetti, & Gulizzi, 2018). Malikan and Nguyen and Farajpour et al. examined biaxial buckling in 
composite plates, while Kaveh et al., Moita et al., Ehsani and Dalir, and Kaveh et al. focused on optimizing the 
geometry of composite plates (Ehsani & Dalir, 2019; Farajpour, Shahidi, & Farajpour, 2018; Kaveh, Dadras, & Geran 
Malek, 2019; Kaveh, Dadras, & Malek, 2018; Malikan & Nguyen, 2018; Moita et al., 2018). Da Silva et al. analyzed 
hexagonally perforated thin steel plates under uniaxial elasto-plastic buckling, while Zureick and Hu et al. researched 
uniaxial buckling in thin steel plates (da Silva et al., 2019; Hu et al., 2020; Zureick, 2018). Lima et al. conducted a 
geometric analysis of thin steel plates with stiffeners under uniaxial elasto-plastic buckling (Lima et al., 2020). Yuan 
et al. introduced similarity criteria for predicting the entire buckling process of stiffened plates under compressive 
loads (Yuan et al., 2021). Furthermore, Falkowicz and Debski studied uniaxial buckling in composite plates, Hou et 
al. modeled the high-order buckling behavior of steel plate shear walls, and Zhang and Sun investigated the mechanical 
responses, including buckling, of a three-dimensional Maltese cross metamaterial (Falkowicz & Debski, 2021; Hou, 
Guo, & Yan, 2021; Zhang & Sun, 2023). Additional studies by Liang and Yin on nonlinear buckling in optimized 
wing structures, Jin et al. on the stability of composite plates bonded with graphene-reinforced actuators, and Park and 
Yi on a finite element analysis-based methodology for thin-plate buckling in crude oil tankers further contribute to the 
field. The wide range of applications of thin plates requires different engineering solutions (Jin, Leng, & Yang, 2024; 
Liang & Yin, 2023; Park & Yi, 2024). An example of this is the insertion of perforations to attend to many specific 
plate uses, like passage of pipes and cables, weight reduction, maintenance access, and assembling (Cheng & Zhao, 
2010). Regarding the perforation’s position, Mohammadzadeh et al. say that the critical load for uniaxial buckling is 
greater when the hole is positioned at the center of the plate compared to other locations (Mohammadzadeh, Choi, & 
Kim, 2018). Additionally, in post-buckling analyses of rectangular plates under biaxial compressive loads with a 
centrally placed cutout, the buckling resistance is found to be less than half of that under uniaxial loading. As noted 
by El-Sawy and Martini, this reduction is attributed to the redistribution of membrane stresses caused by the hole, 
which alters the buckling behavior of the plate (El-Sawy & Martini, 2010). It is worth mentioning that the complexity 
of the analysis and design of such structural components is high, especially when the perforation has an unusual shape 
and/or position, and it is even more complex if the problem conducts to an elasto-plastic buckling analysis. 
Nonetheless, computational modeling using the Finite Element Method (FEM) provides an accurate and effective 
approach to addressing these challenges (El-Sawy & Martini, 2010; Szilard, 2004). For example, Shanmugam et al. 
applied FEM to derive design equations for calculating the ultimate buckling load of square plates under axial and 
biaxial compression with centrally placed square and circular holes (Shanmugam & Narayanan, 1998). Their findings 
revealed that the ultimate load capacity of square perforated plates is notably influenced by both the size of the hole 
and the plate's slenderness ratio. Furthermore, it was observed that plates with circular perforations generally exhibit 
a higher ultimate load-bearing capacity compared to those with square perforations.  Due to the complexity of this 
subject and aiming to enhance accessibility and understanding for a broader audience, including students and non-
specialists, a Glossary can be found in the final of the article. 

3. Computational Model 
The present investigation applied the FEM through the commercial software ANSYS® Mechanical APDL. The 

finite element adopted for the performed thin plate analysis was the SHELL281, which has eight nodes with six 
degrees of freedom at each node: three rotations around x, y, and z-axes and three translations in x, y, and z-axes 
(Ansys®, 2024). The selection of this engineering simulation software was due to the accurate results it produced in 
analyzing the behavior of thin plates under buckling conditions (Baumgardt et al., 2023; da Silveira et al., 2022; 
Fragassa, Minak, & Pavlovic, 2020; Lima et al., 2020; Pavlovic, Fragassa, & Minak, 2017; Silveira et al., 2021), as 
well as in other structural engineering problems (Bhadra et al., 2023; Gonenli & Das, 2022; Kucharski et al., 2022; 
Milošević et al., 2017; Pavlovic & Fragassa, 2020; Safaei et al., 2023; Skripnyak et al., 2021). In the present work, 
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two computational domains were used: a reference plate (with no hole) and a perforated plate, both simply-supported 
and submitted to biaxial compressive loading, as represented in Figure 1. 

 
Figure 1. Computational Domain of the Simply-Supported and Biaxially Compressed: (a) Reference Plate and (b) 

Perforated Plate. 

In the numerical simulation of the post-buckling behavior of plates, the analysis assumed an elastic-perfectly 
plastic material response. As noted by El-Sawy et al., elasto-plastic buckling analysis requires the inclusion of an 
initial imperfection in the plate, which can be obtained from the first elastic buckling mode, characterized by a 
maximum displacement w0, where b is the width of the plate (see Figure 1)(El-Sawy, Nazmy, & Martini, 2004): 

𝑤𝑤0 = 𝑏𝑏
2000

                                                                                   (1) 

The ultimate load of the reference and the perforated plates might be obtained by using as reference the yield load, 
defined as (Lima et al., 2020): 

𝑃𝑃𝑦𝑦 = 𝜎𝜎𝑦𝑦𝑡𝑡                                                                                (2) 

where σy is the yield stress of material; and being Py incremented gradually over the plate edges in x and y-direction. 
With each load increment, the Newton-Raphson method is employed to calculate the corresponding displacements 
that bring the plate to its equilibrium configuration. At the outset of loading step i + 1, there is an out-of-balance load 
vector {𝜓𝜓}, equivalent to the load increment {𝛥𝛥𝑁̄𝑁}, between the vector of external loads, {𝑁̄𝑁}𝑖𝑖+1, and the vector of 
nonlinear internal forces {𝐹𝐹𝑁𝑁𝑁𝑁}, which equals the preceding external load vector {𝑁̄𝑁}𝑖𝑖 , as follows (Lima et al., 2020): 

{𝜓𝜓} = {𝛥𝛥𝑁̄𝑁} = {𝑁̄𝑁}𝑖𝑖+1 − {𝐹𝐹𝑁𝑁𝑁𝑁} = {𝑁̄𝑁}𝑖𝑖+1 − {𝑁̄𝑁}𝑖𝑖                                                                  (3) 

Subsequently, the Newton-Raphson method is applied iteratively to minimize the out-of-balance load vector{𝜓𝜓} 
below a specific tolerance, by using the following equations: 

{𝜓𝜓}𝑟𝑟+1 = {𝑁̄𝑁}𝑖𝑖+1 − {𝐹𝐹𝑁𝑁𝑁𝑁}𝑟𝑟                                                                        (4) 

{𝜓𝜓}𝑟𝑟+1 = [𝐾𝐾𝑡𝑡]𝑟𝑟{𝛥𝛥𝛥𝛥}𝑟𝑟+1                                                                     (5) 

{𝑈𝑈}𝑟𝑟+1 = {𝑈𝑈}𝑟𝑟 + {𝛥𝛥𝛥𝛥}𝑟𝑟+1                                                                      (6) 

where {𝜓𝜓}𝑟𝑟+1 represents the updated out-of-balance load vector, {𝐹𝐹𝑁𝑁𝑁𝑁}𝑟𝑟 is the nonlinear internal forces vector at 
iteration r, [𝐾𝐾𝑡𝑡]𝑟𝑟 is the tangent stiffness matrix calculated as a function of the displacement vector {𝑈𝑈}𝑟𝑟 , and {𝑈𝑈}𝑟𝑟+1 
stands for the updated displacement increment vector. Before performing numerical simulations to obtain the results 
of the present work, verifications and validation steps were conducted to ensure the accuracy of the proposed 
computational model. Among all realized analyses, six of them can be highlighted. Firstly, two verifications were 
carried out to certify the accuracy of computational model for biaxial elastic buckling analysis, which is an important 
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step to the elasto-plastic buckling simulation, once the initial imperfection of plate depends of it’s elastic bucking 
deformation. The first verification for elastic buckling was performed based on Piscopo (Piscopo, 2010). For that, a 
simply-supported steel plate, without perforation, with a/b = 1, t/b = 0.01, Young’s Modulus E = 206 GPa, and 
Poisson’s ratio ν = 0.3, was analyzed by analytical and numerical approaches (see Figure 1a). From Piscopo, the 
analytical solution obtained a critical load of 𝑁̄𝑁𝑐𝑐𝑐𝑐= 372 N/mm while the computational solution indicates 𝑁̄𝑁𝑐𝑐𝑐𝑐= 373 
N/mm (Piscopo, 2010). Numerically simulating this case, the obtained critical load is 𝑁̄𝑁𝑐𝑐𝑐𝑐= 368.89 N/mm, representing 
a difference of 1.1%. Additionaly, based on Jayashankarbabu and Karisiddappa (2014), a perforated steel plate was 
analyzed through the FEM. For E = 210924 MPa, ν = 0.3, b = 1000 mm, and t = 10 mm, the critical load obtained is 
𝑁̄𝑁𝑐𝑐𝑐𝑐 = 314.55 N/mm for a square perforation of a0 = b0 = 250 mm, and 𝑁̄𝑁𝑐𝑐𝑐𝑐= 295.48 N/mm for a0 = b0 = 500 mm (see 
Figure 1b, only replacing the elliptical hole by a square one with α = 0°). For these same cases, with the proposed 
computational model it was reached 𝑁̄𝑁𝑐𝑐𝑐𝑐= 314.39 N/mm for perforation of 250 mm and 𝑁̄𝑁𝑐𝑐𝑐𝑐= 297.49 N/mm for 500 
mm. The comparison represents differences of 0.1% and 0.7% for holes with 250 mm and 500 mm, respectively. In 
turn, the first verification for elasto-plastic buckling was performed based on Shanmugam and Narayanan in which 
the elasto-plastic buckling was analytically studied for a rectangular steel plate without a hole (Shanmugam & 
Narayanan, 1998). With yield stress σy = 245 MPa, Young’s modulus E = 205 GPa, and Poisson’s ratio ν = 0.30, a 
simply-supported, rectangular, steel plate was evaluated with a = 720 mm, b = 240 mm, and t = 4 mm (see Figure 1a). 
The analytical solution resulted in an ultimate stress of σu = 56.35 MPa while the proposed computational model 
obtained σu = 56.60 MPa, with 5.1% of difference between them. Another verification of the computational model 
was made based on Shanmugam et al. (Shanmugam, Thevendran, & Tan, 1999). To do so, a plate with a = b = 125 
mm, t = 6.25 mm, circular cutout with a0 = b0 = 25 mm, boundary conditions as simply-supported, and equal biaxial 
compressive loads on x and y-directions were considered (see Figure 1b). For the evaluation, the material used in the 
investigation was AH-36 steel with σy = 355 MPa, E = 210 GPa, and ν = 0.30. The ultimate stress obtained by the 
proposed equation of Shanmugam et al. resulted in σu = 257.13 MPa, while σu = 276.42 MPa was numerically obtained 
in the present work (Shanmugam, Thevendran, & Tan, 1999). This value represents a difference of 6.98% between 
numerical and analytical solutions, being acceptable according to Shanmugam et al. (Shanmugam, Thevendran, & 
Tan, 1999). Moreover, two validations were carried out: the first for a plate without cutout and the second abh 5.77%. 
The second validation was carried out based on Narayanan and Chow  to confirm the computational model accuracy 
(Narayanan & Chow, 1984). For that, it was considered a simply-supported square plate with a = b = 125 mm and t = 
1.625 and with a centered circular hole of a0 = b0 = 25 mm, under biaxial compressive loading (see Figure 1b). The 
steel plate analyzed has σy = 323.3 MPa, E = 205 GPa, and ν = 0.30. The experimental result presented by Narayanan 
and Chow is σu = 73.8 MPa, while the solution obtained by the computational model is σu = 77.59 MPa, representing 
an error of 5.13% (Narayanan & Chow, 1984). Based on relative percentage discrepancies obtained through the 
verification and validation processes, it is possible to infer that the computational model attends the analysis of the 
biaxial elasto-plastic buckling of thin steel plates (with or without perforations) with good accuracy. After the 
verification and validation of the computational model, the numerical simulations of the present work were developed 
adopting a converged SHELL281 mesh generated by quadrilateral finite elements with 50 mm side and refined at the 
line around the cutout. 

4. Constructal Design Method Application 
The Constructal Design (CD) method allows the understanding of the effect of geometric configuration on the 

system performance. According to Bejan and Zane and Bejan, the Constructal Law is revolutionary because it is a law 
of physics and governs the design and rhythm of any finite-size flow system, anywhere, encompassing animate (trees 
and animals), inanimate (rivers and lightning bolts), and engineered (technology) phenomena (Bejan, 2019; Bejan & 
Peder Zane, 2012). In other words, the Constructal Law can be understood as a unifying principle of design (Rocha et 
al., 2013). It is important to mention that CD is not an optimization method, being necessary to use it simultaneously 
with an optimization technique if the goal is to reach a superior performance for the analyzed system (dos Santos et 
al., 2017). In this work, it is used the Exhaustive Search technique (ES) as the optimization method. It is important to 
highlight the CD method is widely applied in transport phenomena engineering problems, for instance: Feijó et al., 
Nunes et al., Zhang et al., Razera et al., Cunegatto et al., Feng et al., Liu et al., Chen et al., Dan et al., Feng et al., 
Rodha et al., and Lu et al. (Chen et al., 2024; Cunegatto, Gotardo, & Zinani, 2023; Dan et al., 2024; Feijó et al., 2022; 
Feng et al., 2023; Feng et al., 2024; Liu et al., 2023; Lu et al., 2024; Nunes et al., 2021; Razera et al., 2022; Zhang et 
al., 2021). However, according to Bejan and Lorente, in Structural Engineering, systems can be conceptualized as 
flow systems tailored to guide the distribution of stress (Bejan & Lorente, 2008). While interpreting stress as a flow 
may seem unconventional, it proves useful for determining the optimal geometric configuration of structural 
components under stress. For each failure mechanism, there are ways to channel stresses to maximize load capacity 
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within a fixed volume or reduce volume for a given load (Lorente, Lee, & Bejan, 2010). Da Silveira et al. provide 
further detail on the benefits of Constructal Design (CD) in Structural Engineering (da Silveira et al., 2022). Bejan 
and Lorente suggest that all flow systems inherently possess imperfections, which cannot be eliminated but can be 
strategically distributed to ease the flow of currents (Bejan & Lorente, 2008). In Mechanics of Materials, these 
imperfections manifest as stress concentrations. Thus, achieving superior structural performance relies on distributing 
maximum allowable stresses uniformly throughout the material. As outlined by Dos Santos et al., applying the 
Constructal Design (CD) method involves setting constraints (either global or local), defining at least one degree of 
freedom (to vary within these constraints), and selecting at least one performance indicator for optimization (dos 
Santos et al., 2017). Within this framework, the current study examines the mechanical behavior of perforated square 
and rectangular steel plates under biaxial compressive loads of equal magnitude in both in-plane directions, focusing 
on elasto-plastic buckling behavior. As constraints were considered: the plate volume (V), the plate thickness (t), and 
the volume fraction (ϕ) which is defined as the ratio between the elliptical perforation volume and the reference plate 
volume (without hole). As degrees of freedom were considered: the plate’s aspect ratio (b/a), the elliptical hole aspect 
ratio (b0/a0), and the hole angular orientation (α). In addition, two performance indicators were used: the Normalized 
Ultimate Stress (NUS), which should be maximized and is calculated as the ratio of the ultimate stress of the perforated 
plate (σu) and the ultimate stress of the reference plate (σur); and for the cases where the same NUS was obtained to 
more than one b0/a0, the Normalized Maximum Deflection (NMD) was also applied, which might be minimized and 
is defined by the ratio between the maximum deflection obtained for the perforated plate (Uz) and for the reference 
plate (Uzr). Notably, each geometric configuration suggested by the CD method (the search space) was evaluated 
through numerical simulations—around 700 cases in total—with their results compared to achieve geometric 
optimization using the Exhaustive Search (ES) technique. Figure 2 provides a simulation tree that defines the search 
space used by CD, while Figure 3 outlines the steps involved in the application of CD, FEM, and ES for this 
engineering problem. 

 
Figure 2. Simulation Tree to Define the Search Space by using Constructal Design. 
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Figure 3. Flowchart of Constructal Design, Finite Element Method, and Exhaustive Search Application in the 

Geometric Optimization. 

5. Results and Discussion 
The simply-supported steel plates analyzed are made of AH-36 steel, characterized by the next properties: σy = 

355 MPa, E = 210 GPa, and ν = 0.30. As shown in Figure 2, three different b/a values were analyzed, maintaining the 
same thickness t = 12 mm: b/a = 1 (a = b = 1414.214 mm); b/a = 0.5 (a = 2000 mm and b = 1000 mm); and b/a = 0.25 
(a = 2828.43 mm and b = 707.11 mm), resulting in the same volume of material for all ratios of b/a. Five different 
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volume fractions were adopted for the elliptical cutouts: ϕ = 0.025; 0.05; 0.10; 0.15; and 0.20. In addition, four 
different orientations of cutout were considered for all analyzed perforations: α = 0º; 15º; 30º; and 45º. Varying a0 and 
b0, for all ϕ, the cutout geometry was changed (through the degree of freedom b0/a0) keeping constant the volume of 
removed material. In this section, the obtained curves for the NUS variation as a function of the degrees of freedom 
variations are presented for all volume fractions considering α = 0º. Moreover, von Mises stress distributions are 
presented for ϕ = 0.05 and α = 0º. In addition, curves from NUS analysis and von Mises stress distributions for 
orientations α = 15º; 30º; and 45º are presented in Appendix A and are considered in discussions of results. Plates 
were analyzed for all volume fractions ϕ. Several values for the ratio b0/a0 were considered, hence varying the 
dimensions a0 and b0 (see Figure 1b) and the cutout’s geometry, but maintaining the same volume of removed material 
by the perforation. All σu obtained were used to calculate the NUS factor, considering as a reference the ultimate stress 
σur of the no-hole plate (see Figure 1a). When necessary, the maximum deflection Uz obtained from the numerical 
simulations was used to calculate the NMD factor, taking into account the maximum deflection of the no-hole 
reference plate Uzr. Table 1 presents the aspect ratios for the reference plate (see Figure 1), as well as its numerical 
results for stress and deflection. 

Table 1. Reference Values of Stress and Deflection for each Plate’s Aspect Ratio. 

b/a σur (MPa) Uzr (mm) 
1 56.80 44.73 

0.5 49.70 39.41 
0.25 56.80 11.20 

5.1. Square Plates with b/a = 1 

Figure 4 presents the obtained curves for NUS varying the degree of freedom b0/a0 for all volume fractions and α 
= 0º. The obtained curves for α = 15º; 30º; and 45º are presented, respectively, in Figs. A.1; A.2; and A.3 in Appendix 
A. 

 
Figure 4. Curves of the NUS for the Plates with b/a = 1 and α = 0º. 

Based on Figures 4 and A.1 to A.3 it is noticeable that independently of orientation α, the NUS factor behavior 
follows the same pattern, increasing from the smaller values of b0/a0 to close to b0/a0 = 1.000, and then decreasing as 
b0/a0 increases. In addition, as expected it is possible to infer that the increase in cutout volume fraction directly 
impacts the mechanical strength of the plate, leading to a reduction in NUS values. For smaller volume fractions, 
several geometries achieved the maximum NUS requiring a second evaluation based on the NMD factor. On the other 
hand, as ϕ increases, the quantity of geometries with maximized NUS decreased making necessary the NMD evaluation 
for a smaller quantity of cases. As the maximized NUS was obtained for more than one b0/a0, the consideration of the 
NMD factor was needed to obtain the geometry once optimized for each α. It was observed that for all square plates 
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(b/a = 1) the geometry, once optimized, with maximized NUS and minimized NMD is the circular hole (b0/a0)o = 
1.000. As for the circular hole the orientation α is not effective, the geometry twice optimized for square plates and 
for all ϕ values, is (b0/a0)2o = 1.000. Table 2 presents the best results for each volume fraction and Figure 5 depicts the 
von Mises stress distributions for the square plates with ϕ = 0.05. 

Table 2. Optimizations in First and Second Levels for each Volume Fraction and b/a = 1. 

ϕ α (b0/a0)o NUSm (b0/a0)2o NUS2m NUSmin αo 

0.025 

0° 1.000 0.969 

1.000 0.969 0.969 - 15° 1.000 0.969 
30° 1.000 0.969 
45° 1.000 0.969 

0.05 

0° 1.000 0.969 

1.000 0.969 0.906 - 15° 1.000 0.969 
30° 1.000 0.969 
45° 1.000 0.969 

0.10 

0° 1.000 0.906 

1.000 0.906 0.781 - 15° 1.000 0.906 
30° 1.000 0.906 
45° 1.000 0.906 

0.15 

0° 1.000 0.875 

1.000 0.875 0.734 - 15° 1.000 0.875 
30° 1.000 0.875 
45° 1.000 0.875 

0.20 

0° 1.000 0.813 

1.000 0.813 0.688 - 15° 1.000 0.813 
30° 1.000 0.813 
45° 1.000 0.813 

 
Figure 5. Distribution of Von Mises Stresses for the Plates with b/a = 1, ϕ = 0.05, and α = 0°, being: (a) b0/a0 = 

0.199; (b) b0/a0 = 0.354; (c) b0/a0 = 0.509; (d) (b0/a0)2o = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

From Figure 5, it is noticeable the difference on von Mises stresses among the plates due to cutout variation. To 
evaluate the stress distributions, the Constructal Principle of Optimal Distribution of Imperfections (PODI) was 
applied, with the imperfections in Mechanics of Materials problems represented by the maximum stress concentrations 
(Bejan and Lorente, 2008). The geometries (c), (d), and (e) of Figure 5 are the ones that achieved the higher values 
for the NUS factor. For these von Mises stress distributions, it is worth mentioning the bigger quantity of areas 
submitted to the maximum stresses (represented by red color) if compared to the cases (a), (b), and (f) of Figure 5, 
which reached the worst mechanical behavior. Among the plates with the best performance, the perforation of (b0/a0)2o 
= 1.000 is the one that provides the best distribution of stresses since a symmetric distribution of von Mises stresses 
was provided. The same behavior can be observed in Figures B.1 to B.3 in Appendix B, where the circular hole is the 
one that conducts to the superior performance. 

5.2. Rectangular Plates with b/a = 0.5 

Considering b/a = 0.5 and observing the references values in Table 1, it is worth mentioning that occurs a reduction 
of 12.5% in the plate strength if compared with the square plate (b/a = 1) and the same occurs to the deflection, which 
is 11.89% inferior to that obtained for the reference square plate. Figure 6 presents the generated curves due to the 
NUS variation according to the several b0/a0 ratio values for all volume fractions and α = 0º. The analogous curves for 
α = 15º; 30º; and 45º are plotted, respectively, in Figures. A.4; A.5; and A.6 of Appendix A. 
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Figure 6. Curves of the NUS for the Plates with b/a = 0.5 and α = 0°. 

Based on Figure 6 and Figures A.4 to A.6 (see appendix A), one can observe that for b/a = 0.5, the plate mechanical 
behavior is better, in a general way, for the geometric configurations with b0/a0 ≤ 1.000 and inclination angle α = 0º. 
However, in cases having b0/a0 ˃ 1.000, the inclination angle α = 45º conducts to the best mechanical performance. 
Moreover, for the volume fractions (ϕ) analyzed, it is possible to infer that the mechanical behavior is directly affected 
by the increasing of removed material volumes, occurring as expected a reduction of the NUS factor as ϕ increases. 
Still considering Figures 6 and A.4 to A.6, for the cases in which the same maximized NUS magnitude was achieved 
for more than one b0/a0 value, the consideration of NMD factor was needed to obtain the geometry once optimized for 
each α. Therefore, the results showed different optimized geometries for each volume fraction analyzed. The best 
results of each volume fraction, considering inclination angles and two optimizations, are presented in Table 3. Besides 
that, Figure 7 depicts the distribution of von Mises stresses for rectangular plates with b/a = 0.5, ϕ = 0.05, and α = 0º. 
Regarding the results of Figure 7, it can be observed the influence of cutout in the von Mises stress distribution on 
these rectangular steel plates. The twice-optimized geometry presented in Figure 7c is responsible for the best plate 
performance. Comparing this geometry defined by (b0/a0)2o = 0.509 with the others, one can note that the superior 
mechanical behavior was obtained by the plate that has the greater area of maximum stresses (imperfections of the 
system), represented by red color. It means that the plate of Figure 7c, which reached the NUS2m = 0.862, is in line 
with the PODI (Bejan & Lorente, 2008). The same behavior can be seen in Figures B.4 to B.6 (see appendix B), where 
different inclination angles are considered for the distribution of von Mises stresses; as well as in previous works 
addressed to similar structural engineering applications, such as Helbig et al. and Lima et al.(Helbig et al., 2016; Lima 
et al., 2020). 

Table 3(a). Optimizations in First and Second Levels for each Volume Fraction and b/a = 0.5. 

ϕ α (b0/a0)o NUSm (b0/a0)2o NUS2m NUSmin αo 

0.025 

0° 0.707 0.929 

0.707 0.929 0.839 0° 15° 0.707 0.929 
30° 0.707 0.929 
45° 1.592 0.929 

0.05 

0° 0.509 0.862 

0.509 0.862 0.732 0° 15° 0.796 0.857 
30° 0.796 0.839 
45° 1.000 0.839 

0.10 

0° 0.314 0.741 

0.314 0.741 0.571 0° 15° 0.520 0.732 
30° 0.707 0.696 
45° 1.000 0.696 
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Table 3(b). Optimizations in First and Second Levels for each Volume Fraction and b/a = 0.5. 

ϕ α (b0/a0)o NUSm (b0/a0)2o NUS2m NUSmin αo 

0.15 

0° 0.226 0.647 

0.226 0.647 0.464 0° 15° 0.382 0.616 
30° 0.597 0.589 
45° 1.000 0.571 

0.20 

0° 0.260 0.589 

0.260 0.589 0.375 0° 15° 0.421 0.518 
30° 0.629 0.464 
45° 2.037 0.429 

 
Figure 7. Distribution of von Mises stresses for the plates with b/a = 0.5, ϕ = 0.05, and α = 0°, being: (a) b0/a0 = 

0.260; (b) b0/a0 = 0.354; (c) (b0/a0)2o = 0.509; (d) b0/a0 = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

5.3. Rectangular Plates with b/a = 0.25 

The third analysis group is related to rectangular plates having b/a = 0.25, with dimensions and properties earlier 
described, and that were analyzed for the five proposed values of volume fractions ϕ. Through Table 1, it is noticeable 
that the σur is the same obtained result for b/a = 1. Although the ultimate stress is the same that for a square plate, it 
is essential to note that when considering the maximum deflection Uzr for both cases, the square plate has a deflection 
299.4% bigger than the one obtained for b/a = 0.25. Figure 8 presents the generated curves for NUS varying the degree 
of freedom b0/a0 for all volume fractions and α = 0º. The obtained curves for α = 15º; 30º; and 45º are presented, 
respectively, in Figures A.7; A.8; and A.9 (Appendix A). 

 

Figure 8. Curves of the NUS for the Plates with b/a = 0.25 and α = 0°. 
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Figures 8 and A.7 to A.9 indicate that the increasing volume fraction φ causes a worsening of mechanical behavior, 
as already observed in b/a = 1 and 0.5. Especially for the cases considering α = 45º, for the tested cutouts, the geometry 
variation is not effective in changing the mechanical behavior. What can be noted, as characteristics for these analyses, 
is that for the major part of optimized geometric configurations and all twice-optimized geometries, the best 
performance is achieved for bigger values of b0/a0, i.e., the best mechanical behaviors are reached as longer is the hole 
geometry in the y-direction. Figure 9 illustrates the von Mises stress distributions for the plates with b/a = 0.25, φ = 
0.05, and α = 0º. In Appendix B, Figures B.7 to B.9 illustrate the same analysis for different inclination angles. 
Assitionaly, Table 4 presents the best results considering inclination angles and two optimization levels. When 
compared to the general behavior of plates for the three aspect ratios (b/a) analyzed, b/a = 0.25 presents a different 
behavior considering its optimal geometries. From Figures 9 and B.7 to B.9 can be observed that, for this aspect ratio, 
plates present smaller areas submitted to the maximum stresses (represented by red color), and these areas are 
concentrated around the cutout, as can be seen in Figure 9d for the twice-optimized geometry (b0/a0)2o = 1.415 with 
b/a = 0.25, φ = 0.05, and α = 0°. On the other hand, the major area of the plate is subjected to smaller stresses or even 
null stresses (represented by blue color), as can be seen in Figure B.7d for (b0/a0)o = 1.415. Based on these 
observations, it can be affirmed that for b/a = 0.25 the mechanical behavior is defined, basically, by the distribution 
of stresses around the cutout. This finding can be explained based on the flow of stresses by elasto-plastic buckling, 
which can be more or less affected by the cutout geometry. Considering the dimension in the x-direction is four times 
bigger than the y-direction, for b/a = 0.25, stresses in the y-direction are considerably larger than the stresses in the x-
direction, meaning that the optimal geometries will be the ones that provide the best flow of stresses in the y-direction, 
i.e., in the direction of the most representative stresses in the system. This observation and the results of the optimized 
geometric configuration agree with the Constructal PODI (Bejan & Lorente, 2008). 

 

Figure 9. Distribution of Von Mises Stresses for the Plates with b/a = 0.25, φ = 0.05, and α = 0°, being: (a) b0/a0 = 
0.260; (b) b0/a0 = 0.509; (c) b0/a0 = 1.000; and (d) (b0/a0)2o = 1.415. 

Table 4. Optimizations in First and Second Levels for each Volume Fraction and b/a = 0.25. 

φ α (b0/a0)o NUSm (b0/a0)2o NUS2m NUSmin αo 

0.025 
0° 4.814 0.953 

4.814 0.953 0.703 0° 15° 4.814 0.938 
30° 4.814 0.906 
45° 1.000 0.844 

0.05 
0° 1.415 0.813 

1.415 0.813 0.578 0° 15° 1.415 0.781 
30° 1.415 0.781 
45° 0.260 0.781 

0.10 
0° 1.000 0.625 

1.592 0.688 0.250 30° 15° 1.000 0.625 
30° 1.592 0.688 
45° 0.520 0.625 

0.15 
0° 0.780 0.500 

0.780 0.500 0.219 30° 15° 0.780 0.500 
30° 0.780 0.500 
45° 0.780 0.438 

0.20 
0° 0.509 0.344 

0.629 0.375 0.219 15° 15° 0.629 0.375 
30° - - 
45° - - 
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5.4. Global Comparison 

Through the comparison among obtained results for the three investigated b/a values, considering all proposed 
inclination angles α, all studied volume fractions φ, and all analyzed degrees of freedom b0/a0, it can be achieved the 
third level of optimization of this study. Figure 10 presents the distribution of von Mises stresses for the three times 
optimized geometries for each volume fraction φ. 

 

Figure 10. Distribution of von Mises stresses at the third optimized geometry for (a) φ = 0.025; (b) φ = 0.05; (c) φ = 
0.10; (d) φ = 0.15; and (e) φ = 0.20. 

Figure 10 illustrates that for all volume fractions, the same degree of freedom was obtained, being the circular 
hole, the geometry three times optimized, (b0/a0)3o = 1.000. The optimized aspect ratio b/a is the one that conducts to 
the square plate (b/a)o =1. Once the circular hole is the three times optimized geometry, while the inclination angle 
twice optimized, α2o, does not affect the results. Examples of circular holes application in real-world engineering 
structures can be observed in Figure 11. 

 
Figure 11. Application of Circular and Elliptical Holes in Engineering Structures. 

Figure 11 illustrates some images from oil and gas, aeronautical, and naval structures. One can observe circular 
holes in a drillsihip, in internal reinforcements of an aircraft wing, and in ship hulls, as well as elliptical cutouts used 
as airplane windows. Therefore, it is evident that this type of perforation is applicable to a broad range of real-world 
scenarios in structural engineering, emphasizing the importance of understanding the mechanical behavior of 
perforated plates under buckling conditions. 

6. Conclusions 
Understanding the behavior of thin steel plates is crucial, as these structural components are used in many 

engineering applications. The approach to elasto-plastic buckling is particularly important when designing lighter 
structures with higher mechanical strength, as this phenomenon allows for an increased load capacity compared to 
elastic buckling. The Finite Element Method (FEM), combined with Constructal Design (CD) and Exhaustive Search 
Technique (ES), was adopted to optimize the geometries of perforated plates with a centered elliptical cutout to 
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achieve the best structural performance under biaxial compressive loads, up to elasto-plastic buckling. This approach 
to such real-world Structural Engineering problems represents an original scientific contribution of this research. 
Through the analysis of the aspect ratio b/a for the plates, it was possible to observe that the variation of b/a affects 
directly the mechanical behavior of the plate. Among the analyzed reference plates (without cutouts), the best 
performance was achieved with b/a = 0.25. When considering b/a values of 0.25 and 1, the ultimate stress obtained 
was the same, being 14.3% higher than for b/a = 0.5. Additionally, regarding plate deflections, the plate with b/a = 
0.25 is the best option among those without holes. For maximum deflections, the plate with b/a = 1 had deflections 
13.5% and 229.4% greater than those for b/a = 0.25, respectively. In the case of perforated plates, a change in 
mechanical behavior was also noted with varying b/a, particularly for b/a = 0.25, where maximum stresses are 
concentrated around the cutout, and the majority of the plate area experiences low or negligible stresses. Analyzing 
stress components in the x-direction and y-direction revealed that for b/a = 0.25, stresses in the y-direction are 
significantly greater than those in the x-direction. This is a consequence of the resultant load applied at the boundaries, 
which changes with the values of a and b. Regarding the mechanical strength of perforated plates, as expected, the 
presence of a cutout reduces the Normalized Ultimate Stress (NUS) compared to the reference plate (without a hole). 
The reduction in NUS increases with the volume fraction φ. Reductions of up to 18.7%, 41.1%, and 62.5% were 
observed for b/a = 1, 0.5, and 0.25, respectively, for ϕ = 0.20. For each volume fraction (φ) and aspect ratio (b/a), 
optimizations were performed obtaining geometries twice-optimized and their respective inclination angles once-
optimized. A third analysis was conducted, resulting in a geometry three times optimized with the inclination angle 
twice-optimized and the optimal aspect ratio. It was concluded that, for plates with the same material volume and 
thickness, the variation in aspect ratio leads to an optimal (b/a)o = 1, which corresponds to a square plate, for all 
volume fractions φ. The three times optimized geometry is (b0/a0)3o = 1.000 indicating that the circular hole provides 
the best performance among all analyzed geometries. Since the circular hole is the three times optimized geometry, it 
means that the inclination angle twice-optimized does not affect this case. On the other hand, for practical applications, 
the use of rectangular plates can be required. For that, different values of b0/a0 can conduct to results twice optimized, 
which are dependent on α and b/a, as an example: (b0/a0)2o = 0.260 for b/a = 0.5, φ = 0.20, and αo = 30°, which 
represents an increasing of 37.3% when compared to the circular hole. As illustrated in Figure 11, in engineering 
structures the most varied applications for the use of steel plates with elliptical and mainly circular perforations are 
found in practice. Civil, naval, offshore, aerospace, and automotive engineering, among others, widely employ this 
type of cutout in real-world design solutions, justifying the relevance of its study. 

In summary, the main finding that emerge from the present work are: i) The development of a verified and validated 
FEM computational model to numerically simulate the biaxial elasto-plastic buckling of metal plates with or without 
perforations; ii) The development of a methodology combining FEM, CD, and ES, which not only determines the 
optimized geometric configuration of the investigated structural problem but also identifies how geometric variations 
influence the considered performance indicator; iii)  Understanding the elasto-plastic buckling of thin steel plates is 
essential, particularly for the design of lighter structures with higher mechanical strength, as it allows for increased 
load capacity compared to elastic buckling; iv) The aspect ratio b/a has a significant impact on the mechanical behavior 
of plates: for plates without cutouts, the best performance was observed at b/a = 0.25, achieving the highest ultimate 
stress and minimized deflections; v) As expected, the presence of perforations in the plate reduces its ultimate buckling 
stress capacity; and vi) In general, circular holes lead to superior mechanical performance for perforated plates under 
biaxial elasto-plastic buckling, but in certain cases of rectangular plates (b/a < 1), elliptical holes achieved better 
mechanical performance than circular ones. In future works it is recommended to apply the methodology developed 
in the present work to investigate other types of perforations (such as rectangular, oblong, and hexagonal), as well as 
to take into account the presence of a lateral pressure incidng over the plate in addition to the baiaxial compressive 
load. 

Acknowledgement 

The authors L. A. O. Rocha, E. D. dos Santos, and L. A. Isoldi thank to the National Council of Scientific and 
Technological Development (CNPq) for the research grant (Processes: 307791/2019-0, 308396/2021-9, and 
309648/2021-1, respectively). L. A. O. Rocha thanks to Foundation for Science and Technology, I.P. 
(doi.org/10.54499/UIDP/04683/2020; doi.org/10.54499/UIDB/04683/2020). 

References 
Åesson, B. (2014). Plate buckling in bridges and other structures. CRC Press. https://doi.org/10.1201/9781482266030  

Baumgardt, G. R., Fragassa, C., Rocha, L. A. O., dos Santos, E. D., da Silveira, T., & Isoldi, L. A. (2023). 

https://doi.org/10.1201/9781482266030


Reports in Mechanical Engineering ISSN: 2683-5894  57 

Geometric Investigation of Thin Perforated Steel Plates Under Biaxial Elasto-Plastic... (Thiago da Silveira et al.) 

 

 
 

 
 

 

Computational model verification and validation of elastoplastic buckling due to combined loads of thin plates. 
Metals, 13(4), 731. https://doi.org/10.3390/met13040731  

Bejan, A. (2019). Freedom and evolution: hierarchy in nature, society and science. Springer Nature. 
https://doi.org/10.1007/978-3-030-34009-4  

Bejan, A., & Lorente, S. (2008). Design with constructal theory. John Wiley & Sons. 
https://doi.org/10.1002/9780470432709  

Bejan, A., & Peder Zane, J. (2012). Design in nature. Mechanical Engineering, 134(06), 42-47. 
https://doi.org/10.1115/1.2012-JUN-4  

Bhadra, R., Jana, T., Mitra, A., & Sahoo, P. (2023). Effect of CNT radius on flattening contact behaviour of CNT-Al 
nanocomposite: A numerical approch. Reports in Mechanical Engineering, 4(1), 121-130. 
https://doi.org/10.31181/rme040102082023b  

Cao, Y., Zhou, Y., Tian, S., Takagi, J., Li, Z., Fang, D., & Fang, X. (2024). Performance of novel perforated double-
core steel-plate assembled buckling-restrained braces. Journal of Building Engineering, 82, 108326. 
https://doi.org/10.1016/j.jobe.2023.108326  

Chajes, A. (1974). Principles of structural stability theory. Prentice-Hall google schola, 4, 11-20. 
https://doi.org/https://books.google.com.pk/books/about/Principles_of_structural_stability_theor.html?id=FeYeAQA
AIAAJ&redir_esc=y  

Chen, L., Feng, H., Zhang, F., & Ge, Y. (2024). Constructal design for composite heat dissipating structure composed 
of an “arrow”-shaped high conductivity channel and an externally connected “T”-shaped fin. International 
Communications in Heat and Mass Transfer, 153, 107341. https://doi.org/10.1016/j.icheatmasstransfer.2024.107341  

Cheng, B., & Zhao, J. (2010). Strengthening of perforated plates under uniaxial compression: Buckling analysis. Thin-
Walled Structures, 48(12), 905-914. https://doi.org/10.1016/j.tws.2010.06.001  

Cunegatto, E. H. T., Gotardo, M., & Zinani, F. S. F. (2023). Numerical analysis of tube arrangements with one, two, 
and four degrees of freedom for heat transfer with pseudoplastic fluids. International Journal of Heat and Mass 
Transfer, 208, 124080. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124080  

da Silva, C. C. C., Helbig, D., Cunha, M. L., dos Santos, E. D., Rocha, L. A. O., Real, M. d. V., & Isoldi, L. A. (2019). 
Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design 
method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 1-18. 
https://doi.org/10.1007/s40430-019-1815-7  

da Silveira, T., Baumgardt, G., Rocha, L., dos Santos, E., & Isoldi, L. (2022). Numerical simulation and constructal 
design applied to biaxial elastic buckling of plates of composite material used in naval structures. Composite 
Structures, 290, 115503. https://doi.org/10.1016/j.compstruct.2022.115503  

Dan, Z., Feng, H., Chen, L., Liao, N., & Ge, Y. (2024). Constructal design of printed circuit recuperator for S-CO2 
cycle via multi-objective optimization algorithm. Science China Technological Sciences, 67(1), 285-294. 
https://doi.org/10.1007/s11431-023-2500-x  

Dong, J., Ma, X., Zhuge, Y., & Mills, J. E. (2018). Local buckling of thin plate on tensionless elastic foundations under 
interactive uniaxial compression and shear. Theoretical and Applied Mechanics Letters, 8(2), 75-82. 
https://doi.org/10.1016/j.taml.2018.02.003  

dos Santos, E. D., Isoldi, L. A., Gomes, M. d. N., & Rocha, L. A. (2017). The constructal design applied to renewable 
energy systems. In Sustainable energy technologies (pp. 45-62). CRC Press. https://doi.org/10.1201/9781315269979-
4  

Ehsani, A., & Dalir, H. (2019). Multi-objective optimization of composite angle grid plates for maximum buckling 
load and minimum weight using genetic algorithms and neural networks. Composite Structures, 229, 111450. 
https://doi.org/10.1016/j.compstruct.2019.111450  

El-Sawy, K. M., & Martini, M. I. (2010). Stability of biaxially loaded square plates with single central holes. Ships 
and Offshore Structures, 5(4), 283-293. https://doi.org/10.1080/17445300903566181  

El-Sawy, K. M., Nazmy, A. S., & Martini, M. I. (2004). Elasto-plastic buckling of perforated plates under uniaxial 

https://doi.org/10.3390/met13040731
https://doi.org/10.1007/978-3-030-34009-4
https://doi.org/10.1002/9780470432709
https://doi.org/10.1115/1.2012-JUN-4
https://doi.org/10.31181/rme040102082023b
https://doi.org/10.1016/j.jobe.2023.108326
https://doi.org/https:/books.google.com.pk/books/about/Principles_of_structural_stability_theor.html?id=FeYeAQAAIAAJ&redir_esc=y
https://doi.org/https:/books.google.com.pk/books/about/Principles_of_structural_stability_theor.html?id=FeYeAQAAIAAJ&redir_esc=y
https://doi.org/10.1016/j.icheatmasstransfer.2024.107341
https://doi.org/10.1016/j.tws.2010.06.001
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124080
https://doi.org/10.1007/s40430-019-1815-7
https://doi.org/10.1016/j.compstruct.2022.115503
https://doi.org/10.1007/s11431-023-2500-x
https://doi.org/10.1016/j.taml.2018.02.003
https://doi.org/10.1201/9781315269979-4
https://doi.org/10.1201/9781315269979-4
https://doi.org/10.1016/j.compstruct.2019.111450
https://doi.org/10.1080/17445300903566181


Reports in Mechanical Engineering, Vol. 5, No. 1, 2024, pp. 43-67 

58  ISSN: 2683-5894 

 

 
 

 

compression. Thin-Walled Structures, 42(8), 1083-1101. https://doi.org/10.1016/j.tws.2004.03.002  

Falkowicz, K., & Debski, H. (2021). Stability analysis of thin-walled composite plate in unsymmetrical configuration 
subjected to axial load. Thin-Walled Structures, 158, 107203. https://doi.org/10.1016/j.tws.2020.107203  

Farajpour, M., Shahidi, A., & Farajpour, A. (2018). A nonlocal continuum model for the biaxial buckling analysis of 
composite nanoplates with shape memory alloy nanowires. Materials Research Express, 5(3), 035026. 
https://doi.org/10.1088/2053-1591/aab3a9  

Feijó, B. C., Pavlovic, A., Rocha, L. A. O., Isoldi, L. A., Lorente, S., & dos Santos, E. D. (2022). Geometrical 
investigation of microchannel with two trapezoidal blocks subjected to laminar convective flows with and without 
boiling. Reports in Mechanical Engineering, 3(1), 20-36. https://doi.org/10.31181/rme200103020f  

Feng, H., Sun, K., Chen, L., & Ge, Y. (2023). Constructal design of a nanofluid cooling channel with sidewall ribs and 
cavities in a rectangular heat generation body. Case Studies in Thermal Engineering, 41, 102640. 
https://doi.org/10.1016/j.csite.2022.102640  

Feng, H., Zhang, Z., Chen, L., & Ge, Y. (2024). Constructal design for H-shaped compound heat transfer path in a 
rectangular heat generation body. International Journal of Heat and Mass Transfer, 225, 125442. 
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125442  

Figueiredo, J., Simões, F., & da Costa, A. P. (2024). Unilateral buckling of thin plates by complementarity eigenvalue 
analyses. Thin-Walled Structures, 205, 112387. https://doi.org/10.1016/j.tws.2024.112387  

Fragassa, C., Minak, G., & Pavlovic, A. (2020). Measuring deformations in the telescopic boom under static and 
dynamic load conditions. Facta Universitatis, Series: Mechanical Engineering, 18(2), 315-328. 
https://doi.org/10.22190/FUME181201001F  

Ghorbanhosseini, S., Yaghoubi, S., & Bahrambeigi, M. R. (2021). A Comprehensive Study on the Effects of the 
Boundary Conditions on the Elastic Buckling Capacity of a Perforated Plate. International Journal of Advanced 
Design & Manufacturing Technology, 14(3). https://doi.org/10.30495/admt.2021.1914605.1227  

Gonenli, C., & Das, O. (2022). Free vibration analysis of circular and annular thin plates based on crack characteristics. 
Reports in Mechanical Engineering, 3(1), 158-167. https://doi.org/10.31181/rme20016032022g  

Gore, R., & Lokavarapu, B. R. (2022). Effect of Elliptical Cutout on Buckling Load for Isotropic Thin Plate. In 
Innovations in Mechanical Engineering: Select Proceedings of ICIME 2021 (pp. 51-69). Springer. 
https://doi.org/10.1007/978-981-16-7282-8_5  

Guo, Y., & Yao, X. (2021). Buckling behavior and effective width design method for thin plates with holes under stress 
gradient. Mathematical Problems in Engineering, 2021(1), 5550749. https://doi.org/10.1155/2021/5550749  

Helbig, D., Silva, C. C. C. d., Real, M. d. V., Santos, E. D. d., Isoldi, L. A., & Rocha, L. A. O. (2016). Study about 
buckling phenomenon in perforated thin steel plates employing computational modeling and constructal design 
method. Latin American Journal of Solids and Structures, 13(10), 1912-1936. https://doi.org/10.1590/1679-78252893  

Hou, J., Guo, L., & Yan, J. (2021). Steel plate–restraining panel interaction behavior in buckling-restrained steel plate 
shear walls. Thin-Walled Structures, 169, 108348. https://doi.org/10.1016/j.tws.2021.108348  

Hu, H.-S., Fang, P.-P., Liu, Y., Guo, Z.-X., & Shahrooz, B. M. (2020). Local buckling of steel plates in composite 
members with tie bars under axial compression. Engineering Structures, 205, 110097. 
https://doi.org/10.1016/j.engstruct.2019.110097  

Ipek, C., Sofiyev, A., Fantuzzi, N., & Efendiyeva, S. P. (2023). Buckling Behavior of Nanocomposite Plates with 
Functionally Graded Properties under Compressive Loads in Elastic and Thermal Environments. Journal of Applied 
and Computational Mechanics, 9(4), 974-986. https://doi.org/10.22055/jacm.2023.43091.4019  

Jin, Q., Leng, L., & Yang, S. (2024). Buckling analysis of composite plates surface bonded with graphene‐reinforced 
piezoelectric actuators. Polymer Composites, 45(2), 1793-1809. https://doi.org/10.1002/pc.27890  

Jones, R. M. (2006). Buckling of bars, plates, and shells. Bull Ridge Corporation. 
https://books.google.com.pk/books?hl=en&lr=&id=UzVBr8b_jS8C&oi=fnd&pg=PR19&dq=Jones,+R.+M.+(2006).
+Buckling+of+bars,+plates+and+shells.+Blacksburg:+Bull+Ridge+Publishing.&ots=Vu6-
cpiJHM&sig=FKzPDWkPCL3k4T3agRIitvdM8iU&redir_esc=y#v=onepage&q&f=false  

https://doi.org/10.1016/j.tws.2004.03.002
https://doi.org/10.1016/j.tws.2020.107203
https://doi.org/10.1088/2053-1591/aab3a9
https://doi.org/10.31181/rme200103020f
https://doi.org/10.1016/j.csite.2022.102640
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125442
https://doi.org/10.1016/j.tws.2024.112387
https://doi.org/10.22190/FUME181201001F
https://doi.org/10.30495/admt.2021.1914605.1227
https://doi.org/10.31181/rme20016032022g
https://doi.org/10.1007/978-981-16-7282-8_5
https://doi.org/10.1155/2021/5550749
https://doi.org/10.1590/1679-78252893
https://doi.org/10.1016/j.tws.2021.108348
https://doi.org/10.1016/j.engstruct.2019.110097
https://doi.org/10.22055/jacm.2023.43091.4019
https://doi.org/10.1002/pc.27890
https://books.google.com.pk/books?hl=en&lr=&id=UzVBr8b_jS8C&oi=fnd&pg=PR19&dq=Jones,+R.+M.+(2006).+Buckling+of+bars,+plates+and+shells.+Blacksburg:+Bull+Ridge+Publishing.&ots=Vu6-cpiJHM&sig=FKzPDWkPCL3k4T3agRIitvdM8iU&redir_esc=y#v=onepage&q&f=false
https://books.google.com.pk/books?hl=en&lr=&id=UzVBr8b_jS8C&oi=fnd&pg=PR19&dq=Jones,+R.+M.+(2006).+Buckling+of+bars,+plates+and+shells.+Blacksburg:+Bull+Ridge+Publishing.&ots=Vu6-cpiJHM&sig=FKzPDWkPCL3k4T3agRIitvdM8iU&redir_esc=y#v=onepage&q&f=false
https://books.google.com.pk/books?hl=en&lr=&id=UzVBr8b_jS8C&oi=fnd&pg=PR19&dq=Jones,+R.+M.+(2006).+Buckling+of+bars,+plates+and+shells.+Blacksburg:+Bull+Ridge+Publishing.&ots=Vu6-cpiJHM&sig=FKzPDWkPCL3k4T3agRIitvdM8iU&redir_esc=y#v=onepage&q&f=false


Reports in Mechanical Engineering ISSN: 2683-5894  59 

Geometric Investigation of Thin Perforated Steel Plates Under Biaxial Elasto-Plastic... (Thiago da Silveira et al.) 

 

 
 

 
 

 

Kaveh, A., Dadras, A., & Geran Malek, N. (2019). Optimum stacking sequence design of composite laminates for 
maximum buckling load capacity using parameter-less optimization algorithms. Engineering with Computers, 35, 
813-832. https://doi.org/10.1007/s00366-018-0634-2  

Kaveh, A., Dadras, A., & Malek, N. G. (2018). Buckling load of laminated composite plates using three variants of 
the biogeography-based optimization algorithm. Acta Mechanica, 229, 1551-1566. https://doi.org/10.1007/s00707-
017-2068-0  

Kucharski, D. M., Pinto, V. T., Rocha, L. A., Dos Santos, E. D., Fragassa, C., & Isoldi, L. A. (2022). Geometric analysis 
by constructal design of stiffened steel plates under bending with transverse I-shaped or T-shaped stiffeners. Facta 
Universitatis, Series: Mechanical Engineering, 20(3), 617-632. https://doi.org/10.22190/FUME211016070K  

Liang, K., & Yin, Z. (2023). Investigation on nonlinear buckling performance of the optimized wing structure under 
the realistic flight cases. Aerospace Science and Technology, 139, 108416. https://doi.org/10.1016/j.ast.2023.108416  

Lima, J. P. S., Cunha, M. L., dos Santos, E. D., Rocha, L. A. O., de Vasconcellos Real, M., & Isoldi, L. A. (2020). 
Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive 
load. Engineering Structures, 203, 109883. https://doi.org/10.1016/j.engstruct.2019.109883  

Liu, H., Xi, K., Xie, Z., Lu, Z., Chen, H., Zhang, J., & Ge, Y. (2023). Constructal design of double-layer asymmetric 
flower baffles. Energy, 280, 128254. https://doi.org/10.1016/j.energy.2023.128254  

Lorente, S., Lee, J., & Bejan, A. (2010). The “flow of stresses” concept: the analogy between mechanical strength and 
heat convection. International Journal of Heat and Mass Transfer, 53(15-16), 2963-2968. 
https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.038  

Lu, Z., Xie, Z., Xi, K., Lin, D., Liu, H., Ge, Y., & Wu, F. (2024). Constructal evolutionary design of liquid cooling 
heat sink embedded in 3D-IC based on deep neural network prediction. International Communications in Heat and 
Mass Transfer, 152, 107273. https://doi.org/10.1016/j.icheatmasstransfer.2024.107273  

Malikan, M., & Nguyen, V. B. (2018). A novel one-variable first-order shear deformation theory for biaxial buckling 
of a size-dependent plate based on Eringen’s nonlocal differential law. World Journal of Engineering, 15(5), 633-645. 
https://doi.org/10.1108/WJE-11-2017-0357  

Milazzo, A., Benedetti, I., & Gulizzi, V. (2018). An extended Ritz formulation for buckling and post-buckling analysis 
of cracked multilayered plates. Composite Structures, 201, 980-994. https://doi.org/10.1016/j.compstruct.2018.06.026  

Milošević, M., Miltenović, A., Banić, M., & Tomić, M. (2017). Determination of residual stress in the rail wheel 
during quenching process by FEM simulation. Facta Universitatis, Series: Mechanical Engineering, 15(3), 413-425. 
https://doi.org/10.22190/FUME170206029M  

Mishurenko, N., & Semenov, A. (2024). Influence of Discretely Introduced Cutouts on the Buckling of Shallow Shells 
with Double Curvature. Journal of Applied and Computational Mechanics, 10(1), 55-63. 
https://doi.org/10.22055/jacm.2023.44219.4182  

Mitsui, K., Ikarashi, K., & Sada, K. (2024). Elastic Critical Buckling Coefficients for Skew Plates of Steel Structures 
under Biaxial Normal Stress. Buildings, 14(4), 901. https://doi.org/10.3390/buildings14040901  

Mohammadzadeh, B., Choi, E., & Kim, W. J. (2018). Comprehensive investigation of buckling behavior of plates 
considering effects of holes. Struct. Eng. Mech, 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261  

Moita, J. S., Araújo, A. L., Correia, V. F., Soares, C. M. M., & Herskovits, J. (2018). Material distribution and sizing 
optimization of functionally graded plate-shell structures. Composites Part B: Engineering, 142, 263-272. 
https://doi.org/10.1016/j.compositesb.2018.01.023  

Musmar, M. A. (2021). A Parametric Study on the Buckling Behavior of Square Steel Plates under Uniaxial 
Compression. https://doi.org/10.13189/cea.2021.090717  

Narayanan, R., & Chow, F.-Y. (1984). Strength of biaxially compressed perforated plates. 
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1168&context=isccss  

Nunes, B. R., Rodrigues, M. K., Oliveira Rocha, L. A., Labat, M., Lorente, S., dos Santos, E. D., Isoldi, L. A., & 
Biserni, C. (2021). Numerical‐analytical study of earth‐air heat exchangers with complex geometries guided by 
constructal design. International Journal of Energy Research, 45(15), 20970-20987. https://doi.org/10.1002/er.7157  

https://doi.org/10.1007/s00366-018-0634-2
https://doi.org/10.1007/s00707-017-2068-0
https://doi.org/10.1007/s00707-017-2068-0
https://doi.org/10.22190/FUME211016070K
https://doi.org/10.1016/j.ast.2023.108416
https://doi.org/10.1016/j.engstruct.2019.109883
https://doi.org/10.1016/j.energy.2023.128254
https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.038
https://doi.org/10.1016/j.icheatmasstransfer.2024.107273
https://doi.org/10.1108/WJE-11-2017-0357
https://doi.org/10.1016/j.compstruct.2018.06.026
https://doi.org/10.22190/FUME170206029M
https://doi.org/10.22055/jacm.2023.44219.4182
https://doi.org/10.3390/buildings14040901
https://doi.org/10.12989/sem.2018.68.2.261
https://doi.org/10.1016/j.compositesb.2018.01.023
https://doi.org/10.13189/cea.2021.090717
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1168&context=isccss
https://doi.org/10.1002/er.7157


Reports in Mechanical Engineering, Vol. 5, No. 1, 2024, pp. 43-67 

60  ISSN: 2683-5894 

 

 
 

 

Park, J.-S., & Yi, M.-S. (2024). Root Causes of Thin-Plate Buckling Damage at the Aft-End in Crude Oil Tanker and 
Verification through Buckling Analysis. Metals, 14(2), 158. https://doi.org/10.3390/met14020158  

Pavlovic, A., & Fragassa, C. (2020). Geometry optimization by fem simulation of the automatic changing gear. 
Reports in Mechanical Engineering, 1(1), 199-205. https://doi.org/10.31181/rme200101199p  

Pavlovic, A., Fragassa, C., & Minak, G. (2017). Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena 
kliznih oslonaca. Tehnički vjesnik, 24(3), 729-735. https://doi.org/10.17559/TV-20160510143822  

Piscopo, V. (2010). Refined buckling analysis of rectangular plates under uniaxial and biaxial compression. 
International Journal of Mechanical and Mechatronics Engineering, 4(10), 1018-1025. 
https://doi.org/10.5281/zenodo.1078458  

Qablan, H. A., Rabab’ah, S., Alfoul, B. A., & Hattamleh, O. A. (2022). Semi-empirical buckling analysis of perforated 
composite panel. Mechanics Based Design of Structures and Machines, 50(8), 2635-2652. 
https://doi.org/10.1080/15397734.2020.1784198  

Razera, A., da Fonseca, R., Isoldi, L., Dos Santos, E., Rocha, L., & Biserni, C. (2022). A constructal approach applied 
to the cooling of semi-elliptical blocks assembled into a rectangular channel under forced convection. International 
Journal of Heat and Mass Transfer, 184, 122293. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122293  

Rocha, L., Santos, E. d., Cunha, D., Garcia, F., Lorenzini, G., Biserni, C., Letzow, M., Costa, J., Souza, J., & Isoldi, 
L. (2013). Constructal Design of Thermal Systems. Constructal Law and the Unifying Principle of Design, 295-321. 
https://doi.org/10.1007/978-1-4614-5049-8  

Rocha, L. A., Lorente, S., & Bejan, A. (2018). Constructal theory in heat transfer. In Handbook of thermal science and 
engineering (pp. 329-360). Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_66-1  

Saad-Eldeen, S., & Garbatov, Y. (2023). Experimental and Numerical Analysis of Structural Capacity of Perforated 
Stiffened Plates. Journal of Marine Science and Engineering, 11(4), 842. https://doi.org/10.3390/jmse11040842  

Saad-Eldeen, S., Garbatov, Y., & Soares, C. G. (2018). Structural capacity of plates and stiffened panels of different 
materials with opening. Ocean Engineering, 167, 45-54. https://doi.org/10.1016/j.oceaneng.2018.08.013  

Safaei, B., Onyibo, E. C., Goren, M., Kotrasova, K., Yang, Z., Arman, S., & Asmael, M. (2023). Free vibration 
investigation on RVE of proposed honeycomb sandwich beam and material selection optimization. Facta 
Universitatis, Series: Mechanical Engineering, 21(1), 031-050. https://doi.org/10.22190/FUME220806042S  

Shahani, A. R., & Kiarasi, F. (2023). Numerical and Experimental Investigation on Post-buckling Behavior of 
Stiffened Cylindrical Shells with Cutout subject to Uniform Axial Compression. Journal of Applied and 
Computational Mechanics, 9(1), 25-44. https://doi.org/10.22055/jacm.2021.33649.2261  

Shanmugam, N., & Narayanan, R. (1998). Ultimate Strength of Biaxially Loaded Plates. In Stability and Ductility of 
Steel Structures (SDSS'97) (pp. 211-223). Elsevier. https://doi.org/10.1016/B978-008043320-2/50020-4  

Shanmugam, N., Thevendran, V., & Tan, Y. (1999). Design formula for axially compressed perforated plates. Thin-
Walled Structures, 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4  

Shojaee, T., Mohammadi, B., Madoliat, R., & Salimi-Majd, D. (2019). Development of a finite strip method for 
efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener. 
Composite Structures, 210, 538-552. https://doi.org/10.1016/j.compstruct.2018.11.007  

Silveira, T., Pinto, V. T., Neufeld, J. P. S., Pavlovic, A., Rocha, L. A. O., Santos, E., & Isoldi, L. A. (2021). Applicability 
evidence of constructal design in structural engineering: Case study of biaxial elasto-plastic buckling of square steel 
plates with elliptical cutout. Journal of Applied and Computational Mechanics, 7(2), 922-934. 
https://doi.org/10.22055/jacm.2021.35385.2647  

Skripnyak, V. A., Iokhim, K., Skripnyak, E., & Skripnyak, V. V. (2021). Modeling of titanium alloys plastic flow in 
linear friction welding. Facta Universitatis, Series: Mechanical Engineering, 19(1), 091-104. 
https://doi.org/10.22190/FUME201225014S  

Szilard, R. (2004). Theories and applications of plate analysis: classical, numerical and engineering methods. Appl. 
Mech. Rev., 57(6), B32-B33. 
https://doi.org/https://books.google.com.pk/books/about/Theories_and_Applications_of_Plate_Analy.html?id=Hd3k

https://doi.org/10.3390/met14020158
https://doi.org/10.31181/rme200101199p
https://doi.org/10.17559/TV-20160510143822
https://doi.org/10.5281/zenodo.1078458
https://doi.org/10.1080/15397734.2020.1784198
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122293
https://doi.org/10.1007/978-1-4614-5049-8
https://doi.org/10.1007/978-3-319-32003-8_66-1
https://doi.org/10.3390/jmse11040842
https://doi.org/10.1016/j.oceaneng.2018.08.013
https://doi.org/10.22190/FUME220806042S
https://doi.org/10.22055/jacm.2021.33649.2261
https://doi.org/10.1016/B978-008043320-2/50020-4
https://doi.org/10.1016/S0263-8231(98)00052-4
https://doi.org/10.1016/j.compstruct.2018.11.007
https://doi.org/10.22055/jacm.2021.35385.2647
https://doi.org/10.22190/FUME201225014S
https://doi.org/https:/books.google.com.pk/books/about/Theories_and_Applications_of_Plate_Analy.html?id=Hd3kQURHXcoC&redir_esc=y


Reports in Mechanical Engineering ISSN: 2683-5894  61 

Geometric Investigation of Thin Perforated Steel Plates Under Biaxial Elasto-Plastic... (Thiago da Silveira et al.) 

 

 
 

 
 

 

QURHXcoC&redir_esc=y  

Trahair, N. S., Bradford, M., Nethercot, D., & Gardner, L. (2017). The behaviour and design of steel structures to 
EC3. CRC Press. https://doi.org/10.1201/9781315273518  

Uslu, F., Saraçoğlu, M. H., & Albayrak, U. (2022). Buckling of square and circular perforated square plates under 
uniaxial loading. Journal of Innovations in Civil Engineering and Technology, 4(2), 61-75. 
https://dergipark.org.tr/en/pub/jiciviltech/issue/74932/1190956  

Wang, M., Chen, Y., Gao, W., Li, Z., & Zhang, J. (2024). Theoretical and numerical study of the buckling of steel-
composite cylindrical shells under axial compression. Applied Ocean Research, 153, 104221. 
https://doi.org/10.1016/j.apor.2024.104221  

Yuan, T., Yang, Y., Kong, X., & Wu, W. (2021). Similarity criteria for the buckling process of stiffened plates subjected 
to compressive load. Thin-Walled Structures, 158, 107183. https://doi.org/10.1016/j.tws.2020.107183  

Zhang, Q., & Sun, Y. (2023). Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized 
by negative thermal expansion and negative Poisson’s ratio. Applied Mathematics and Mechanics, 44(9), 1457-1486. 
https://doi.org/10.1007/s10483-023-3024-6  

Zhang, Z., Feng, H., Chen, L., & Ge, Y. (2021). Multi-objective constructal design for compound heat dissipation 
channels in a three-dimensional trapezoidal heat generation body. International Communications in Heat and Mass 
Transfer, 127, 105584. https://doi.org/10.1016/j.icheatmasstransfer.2021.105584  

Zhang, Z., Ye, J., Huang, Z., Qin, G., & Xu, S. (2022). Elastic buckling behavior of corroded uniformly compressed 
plates with three simply supported edges. Structures,  

Zureick, A.-H. (2018). On the buckling of an isotropic rectangular plate uniformly compressed on two simply 
supported edges and with two free unloaded edges. Thin-Walled Structures, 124, 180-183. 
https://doi.org/10.1016/j.tws.2017.12.012  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/https:/books.google.com.pk/books/about/Theories_and_Applications_of_Plate_Analy.html?id=Hd3kQURHXcoC&redir_esc=y
https://doi.org/10.1201/9781315273518
https://dergipark.org.tr/en/pub/jiciviltech/issue/74932/1190956
https://doi.org/10.1016/j.apor.2024.104221
https://doi.org/10.1016/j.tws.2020.107183
https://doi.org/10.1007/s10483-023-3024-6
https://doi.org/10.1016/j.icheatmasstransfer.2021.105584
https://doi.org/10.1016/j.tws.2017.12.012


Reports in Mechanical Engineering, Vol. 5, No. 1, 2024, pp. 43-67 

62  ISSN: 2683-5894 

 

 
 

 

Appendix A 

 

Figure A.1. Curves of the NUS for the Plates with b/a = 1 and α= 15°. 

 

Figure A.2. Curves of the NUS for the Plates with b/a = 1 and α = 30°. 

 

Figure A.3. Curves of the NUS for the Plates with b/a = 1 and α = 45°. 
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Figure A.4. Curves of the NUS for the Plates with b/a = 0.5 and α= 15°. 

 

Figure A.5. Curves of the NUS for the Plates with b/a = 0.5 and α= 30°. 

 

Figure A.6. Curves of the NUS for the Plates with b/a = 0.5 and α= 45°. 
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Figure A.7. Curves of the NUS for the Plates with b/a = 0.25 and α= 15°. 

 

Figure A.8. Curves of the NUS for the Plates with b/a = 0.25 and α= 30°. 

 

Figure A.9. Curves of the NUS for the Plates with b/a = 0.25 and α= 45°. 
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Appendix B 

 

Figure B.1. Distribution of Von Mises Stresses for the Plates with b/a = 1, ϕ = 0.05, and α = 15°, being: (a) b0/a0 = 
0.199; (b) b0/a0 = 0.354; (c) b0/a0 = 0.509; (d) (b0/a0)2o = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

 

Figure B.2. Distribution of Von Mises Stresses for the Plates with b/a = 1, ϕ = 0.05, and α = 30°, being: (a) b0/a0 = 
0.199; (b) b0/a0 = 0.354; (c) b0/a0 = 0.509; (d) (b0/a0)2o = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

 

Figure B.3. Distribution of Von Mises Stresses for the Plates with b/a = 1, ϕ = 0.05, and α = 45°, being: (a) b0/a0 = 
0.199; (b) b0/a0 = 0.354; (c) b0/a0 = 0.509; (d) (b0/a0)2o = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

 

Figure B.4. Distribution of Von Mises Stresses for the Plates with b/a = 0.5, ϕ = 0.05, and α = 15°, being: (a) b0/a0 
= 0.260; (b) b0/a0 = 0.354; (c) (b0/a0)o = 0.796; (d) b0/a0 = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

 

Figure B.5. Distribution of Von Mises Stresses for the Plates with b/a = 0.5, ϕ = 0.05; and α = 30°, being: (a) b0/a0 
= 0.260; (b) b0/a0 = 0.354; (c) (b0/a0)o = 0.509; (d) b0/a0 = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 
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Figure B.6. Distribution of Von Mises Stresses for the Plates with b/a = 0.5, ϕ = 0.05, and α = 45°, being: (a) b0/a0 
= 0.260; (b) b0/a0 = 0.354; (c) (b0/a0)o = 0.509; (d) b0/a0 = 1.000; (e) b0/a0 = 1.415; and (f) b0/a0 = 3.183. 

 

Figure B.7. Distribution of Von Mises Stresses for the Plates with b/a = 0.25, ϕ = 0.05, and α = 15°, being: (a) b0/a0 
= 0.260; (b) b0/a0 = 0.509; (c) b0/a0 = 1.000; and (d) (b0/a0)o = 1.415. 

 

Figure B.8. Distribution of von Mises stresses for the plates with b/a = 0.25, ϕ = 0.05, and α= 30°, being: (a) b0/a0 
= 0.260; (b) b0/a0 = 0.509; (c) b0/a0 = 1.000; and (d) (b0/a0)o = 1.415. 

 

Figure B.9. Distribution of von Mises stresses for the plates with b/a = 0.25, ϕ = 0.05, and α = 45°, being: (a) 
(b0/a0)o = 0.260; (b) b0/a0 = 0.509; (c) b0/a0 = 1.000; and (d) 1.415. 

Glossary 
Aspect Ratio: The proportion between the plate's length and width, affecting its buckling modes. 
Boundary Conditions: Constraints applied to the edges of the plate that influence buckling behavior. 
Buckling Load Factor: A multiplier indicating how close the applied load is to the calculated critical buckling load. 
Circular/Elliptical Perforations: Openings in plates to optimize structural efficiency, affecting the buckling modes. 
Constructal Design Method: A geometric evaluation method inspired by nature, aiming to improve the flow and 
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distribution of structures to minimize resistance or maximize efficiency. 
Critical Load: The minimum load at which buckling occurs. 
Elastic Buckling: Deformation of a structure under critical load, with the material remaining in the elastic range. 
Elasto-plastic Buckling: Buckling involving both elastic and plastic deformation, occurring after the yield point. 
Exhaustive Search Technique: An optimization technique where all possible configurations are explored to find 

the best design. 
Finite Element Method (FEM): A numerical simulation technique used to study buckling behavior by dividing the 

structure into smaller, solvable elements. 
Imperfections: Small geometric irregularities in plates that can affect buckling behavior. 
Linear vs. Nonlinear Analysis: Linear assumes small deformations, while nonlinear includes large displacements 

and plasticity effects. 
Load Factor: The ratio of the applied load to the critical load, used to predict structural stability. 
Load-bearing Capacity: The maximum load a plate can sustain before buckling failure. 
Material Anisotropy: The property of materials having different mechanical characteristics in different directions, 

relevant in buckling analysis. 
Mode Shapes: The various deformation patterns a plate can exhibit when buckling. 
Optimization: The process of adjusting geometric parameters (e.g., perforation size, perforation shape, perforation 

type) to improve resistance to buckling. 
Perforated Plates: Steel plates with circular or elliptical holes to reduce weight or optimize material distribution. 
Plastic Hinge Formation: Localized plastic deformation in a plate affecting its post-buckling behavior. 
Post-Buckling Behavior: Analysis of how the structure behaves after initial buckling, especially in elasto-plastic 

scenarios. 
Residual Stresses: Stresses present in the material before external loads, influencing buckling behavior. 
Safety Factor: A design margin used to prevent buckling failure, especially for elasto-plastic materials. 
Slenderness Ratio: The ratio of a plate's height to its thickness, determining susceptibility to buckling. 
Stiffness Matrix: A matrix in FEM representing a structure's resistance to deformation under load. 
Stress Concentration: Increased stress around perforations or holes, influencing the plate's resistance to buckling. 
Structural Integrity: Evaluation of a perforated plate's ability to maintain functionality without buckling. 
Thickness Ratio: The ratio of plate thickness to other dimensions, which affects its buckling resistance. 
Ultimate Buckling Load: The maximum load that a structural component can sustain before it experiences buckling 

failure. 
von Mises Stress: A criterion for predicting when a material will start to deform plastically. 
Yield Point: The point at which material transitions from elastic to plastic deformation. 
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