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 This paper aims to compare the fiber-matrix adhesion of epoxy/kenaf and 
tannin/kenaf composite materials. Pull-out tests were performed to assess the 
shear strength at the fiber-matrix interface. The observations are correlated with 
statistical analyses. The results showed that the shear strength at the fiber-matrix 
interface was significantly higher for kenaf fibers treated with 0.5 M sodium 
hydroxide (NaOH) and coupled with epoxide (0.1390 N/mm²) compared to the 
same fibers treated and coupled with a tannin-based vegetable matrix (0.0903 
N/mm²). However, this treatment caused a slight reduction in the tensile strength 
of the fibers. The surface of the treated kenaf fibers is very clean; the 
disappearance of impurities such as wax and oil led to improved molecular 
cohesion on the surface of the treated kenaf fibers, suggesting enhanced fiber-
matrix adhesion. In fact, the absorption and dispersion energies on the fiber 
surface increased with the sodium hydroxide treatment and alkalization 
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1. Introduction 
Although biobased plastic materials are currently gaining in importance, the biobased composites available on the 

market are generally only considered as such thanks to the use of reinforcements based on plant fibers, their matrix 
remaining in most cases of fossil origin  (Blanco & Siracusa, 2021; Hounkpatin et al., 2023; Pandit et al., 2018; Paul 
et al., 2023; Sayouba et al., 2023; Sid et al., 2021; Wasieleski et al., 2021). However, since the matrix most of the time 
represents more than half of the mass of the composite, the trend is towards using matrices that are also biosourced to 
move towards a “100% biosourced” composite. As is often the case, man still seeks to copy what nature has done very 
well for millions of years: wood! 

Composites with biosourced reinforcements, as defined above, made a significant impact in Europe in 2010, 
representing a volume of 362 kT and constituting approximately 15% of the total composite production estimated at 
2.5 million tonnes. This trend of replacing the petro-sourced matrix with increasingly larger quantities of biosourced 
polymers is a promising sign for the future of sustainable materials (Chang et al., 2021; Oliver-Ortega et al., 2021; 
Weyhrich et al., 2023). 

The main factors driving the increasing development of these materials are well-known: 
• Limited and increasingly expensive fossil resources; 
• Sustainable development and concerns about climate change, which are at the heart of changes in Global 

regulations; 
• Global reindustrialization is partly based on the development of the bioeconomy. 
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The main factor limiting biosourced materials' development and market penetration is the lower performance/cost 
ratio than that of materials from petrochemicals, which products with less maturity can explain. The specific 
challenges linked to the performance/cost ratio of biobased materials are significant, but not insurmountable. Despite 
their advantages, they are still often overlooked because of their price. However, the gap with traditional materials is 
narrowing, and long-term calculations favor other materials. To meet these challenges, it would be wise to seek a 
compromise between their performance and their market price. The lack of rigorous data concerning the life cycle of 
these materials also hinders their development. However, the combination of microscopic imaging and the “pull out 
test” allows the observation of the shape of the fracture surface between two materials. Indeed, microscopic imaging 
makes it possible to observe material surfaces with a resolution of the order of μm. These observations aim to 
understand the microstructure of the various reinforcements (fiber arrangement, fiber/matrix interface) and to detect 
any manufacturing defects (decohesion’s, voids) (Ferrier et al., 2015). Specific pull-out tests are used to assess the 
influence of different parameters (fiber type, bar diameter and surface geometry) on the force transfer mechanism at 
the interface. Good adhesion excludes the presence of a break at the interface The perpendicular tensile test is 
standardized for wood materials, and is considered a good indicator of the adhesion quality (Cook & Chiu, 1997; 
Xiong et al., 2018). As a result, the problem of matrix fiber adhesion arises and forces us to focus on it throughout this 
paper. Your work in this field is crucial to overcoming these challenges and advancing the use of biosourced materials. 

The main objective of this study is to compare the fiber/matrix adhesion between composite materials based on 
kenaf fibers reinforced with either an epoxy resin or a tannin resin. Fiber/matrix adhesion is a key parameter 
conditioning composite materials' mechanical properties and durability (Joly et al., 2005). Pull-out tests are used to 
assess interfacial shear strength, and the results are statistically analyzed to identify the factors influencing this 
adhesion (Jawaid et al., 2011; Saba et al., 2015). This study aims to understand better the interactions between kenaf 
fibers and epoxy and tannin matrices to optimize the properties of biobased composite materials. The results obtained 
will help guide the development of new high-performance composites that meet current environmental requirements. 
First, a review of the literature on the properties of plant-reinforced composites will be presented to better understand 
the mechanisms involved. 

2. Literature review  
2.1 General information on tannins 

2.1.1 Classification of tannins 

Tannins are non-nitrogenous polyphenolic compounds present in the majority of plants, like cellulose, 
hemicelluloses and lignin (Adegoke et al., 2022; Ahmed et al., 2023; Cheynier, 2012; Karioti et al., 2016; Ntenga et 
al., 2017; Patra & Saxena, 2011; Sellam et al., 2022). They are obtained by aqueous counter-current extraction at high 
temperature (90°C maximum), with or without additives such as sulphites, bisulphites or urea. Extraction yields are 
relatively low, ranging from 10% to 30%, depending on the method used. These plant tannins are classified into two 
main categories based on their chemical structure: hydrolyzable tannins and condensed tannins (Alkhoori et al., 2022; 
Ayari‐Guentri et al., 2024; Forzato et al., 2020; Lazzari et al., 2023; Ökmen et al., 2023; Pour et al., 2016; Romani et 
al., 2002; Saxena et al., 2021; Shresta et al., 2021). One of the reasons for using tannins as a matrix material is their 
oxidation resistance. 

2.1.2 Extraction of tannins 

Tannin extracts are obtained by concentration of tannin solutions obtained by leaching particles of wood or bark  
(Aspevik et al., 2018; Borrero-López et al., 2022; Dietrich & Pour Nikfardjam, 2017; Dijkstra, 2013; Gadrat et al., 
2022; Koopmann et al., 2020; Nunes et al., 2020). The manufacture of wood-based panels such as plywood or 
chipboard requires the use of formaldehyde, a volatile and toxic product. For this reason, new adhesives based on 
natural tannins extracted from wood have been developed (binti Hamdi & Ahmad, 2023). They contain little or no 
formaldehyde and offer enhanced mechanical and durability characteristics. The extract can be recovered in liquid 
form, in a highly concentrated solution or more commonly in dry powder form (4-6% humidity). Obtaining these 
products differs little depending on the raw material used. In the case of using wood to obtain tannins, only large 
branches and trunks are generally exploited (Salman et al., 2014). They are cut and split into billets for transport to 
extraction facilities. Everything is then cut perpendicular to the axis of the fibers in the form of chips or wafers. The 
grain size greatly influences the extraction speed, so the maximum chip thickness is generally between 5 and 10 mm. 
Indeed, it shows that as chip thickness decreases, tannin extraction time increases. The extraction is then carried out 
using the counter-current principle, which makes it possible to obtain more concentrated solutions and extract a larger 
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quantity of tannins from the wood. We generally use a series of autoclaves connected so as to circulate the extraction 
solution at temperatures ranging from 110°C to 90°C, respectively starting from the autoclave containing the most 
leached chips and going towards the autoclave containing the fresh chips. Table 1 gives the evolution of the extraction 
rate of the total mass of extractables as a function of the size of the chips. 

Table 1. Extraction rate as a % of the total mass of extractables depending on the size of the chips 

Chip Thickness (Mm) 18 15 10 5 
Tannin Extracted In 4hours (%) 47 50 60 62 

 

The recovered solution, which at this stage only contains approximately 6% dry extract, is then cooled, decanted 
to eliminate the insoluble, and concentrated by evaporation of water. To limit the hydrolysis and oxidation of tannins, 
the concentration is carried out under low pressure to lower the boiling temperature of the mixture. At the end of the 
concentration cycle, the solution approaches 50% dry extract. Tannins can be supplied as is in solution but are currently 
generally delivered in powder form (Herzi et al., 2013; Konfo et al., 2023; Ntenga et al., 2017; Romanus et al., 2009). 
The concentrated solution is then passed through an atomizer with cyclonic separators, and the collected powder is 
packaged for sale. 

2.2 Loadings 

There are 4 main types of stress to which a material can be subjected: traction, compression, shear and bending 
(Azuwa & Yahaya, 2024; Corinaldesi & Nardinocchi, 2016; Kassoul et al., 2018; Liu et al., 2019; Qasim et al., 2022; 
Zaoui et al., 2022).  

• Tensile: The response of a composite in tension depends mainly on the stiffness and strength of the fibers, as 
they are much greater than those of the resin. 

• Compression: Here, the rigidity of the matrix plays a more critical role, particularly for composites with 
unidirectional fibers, because it must maintain the fibers in the axis of the applied force. 

• Shear: This type of loading uses the properties of the matrix to transfer and distribute the forces applied to 
the reinforcement. In addition to having high-performance mechanical properties, the fiber-matrix interface 
must be of high quality; that is, the resin must adhere well to the fibers. 

• Bending: In reality, bending is just a combination of tension, compression and shear applied to the composite. 
The upper face is subjected to compression, the lower face to tension, and the central layer to shear. 

        Figure 1 shows the evolution of the stress of a composite as a function of its elongation. 
 

 
Figure 1. Model response curve of a composite to mechanical stress 
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The elongation at break of a material is the relative variation in the length it reaches when it is stretched to its 
maximum, until it mechanically breaks. In the "stress-strain" curve, elongation can be used to measure the appearance 
of micro-structures in the composite. The elongation that a composite can reach before the appearance of microcracks 
depends on the strength and adhesion capabilities of the resin. For brittle resins, like most polyesters, this point is 
reached well before the composite completely breaks. The wear resistance of the composite can be as low as 10% of 
the ultimate resistance of the composite (Raabe et al., 2022). In parallel with the composite's fatigue resistance 
problems, microcracks can also affect its longevity in the face of environmental conditions. The reinforcement or core 
of the resin can be degraded more quickly by humidity and/or chemical substances that insinuate into these breaches. 
Consequently, the overall resistance of the composite will decrease over time. A practical illustration can be found in 
the work of (Mulenga et al., 2021; Qasim et al., 2022). 

2.3 Composite materials 

Before specifying the two prominent families of polymers, it is interesting to recall the definition of a composite 
material. The term “composite material” designates a solid and heterogeneous material comprising several distinct 
components, the association of which gives the whole set of properties that none of the elements considered possesses 
separately. 

Therefore, the production of a composite material requires the association of at least two components: the 
reinforcement and the matrix, which must be compatible with each other and hold together (Bera & Banerjee, 2023; 
Netsch et al., 2022). A liaison agent, called an interface, is necessary (see Figure 2). Fillers and additives can be added 
to the composite in the form of incomplete elements, powders or liquids, to modify a property of the material to which 
it is added (for example impact resistance, UV resistance, fire resistance). 

 

Figure 2. Schematic representation of a composite material. 

2.3.1 Reinforcement 

Composites are often referred to according to the type of reinforcement. Thus, there are particle composites, 
sandwich composites, dispersed phase composites or even fibrous composites (Khorasani et al., 2022; Nguyen et al., 
2022). 

2.3.2 The matrix 

In a composite material, the term matrix designates the solid material surrounding the reinforcements to form a 
compact mass (Corinaldesi & Nardinocchi, 2016; Qasim et al., 2022). The primary role of the matrix is to keep the 
reinforcements compact and give the desired shape to the final product. It also protects the fibers against abrasion and 
an aggressive environment, controls the surface finish, and ensures the transfer of loads between the fibers. The solid 
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forming the matrix can be metallic, ceramic or polymer. Based on the nature of the matrix, composite materials are 
classified into three categories: 

• Polymer or organic matrix composites (CMO); 
• Metal matrix composites; 
• Ceramic matrix composites.   

For the composites that we are going to study (CMO) the mechanical properties of the matrix are generally very 
weak compared to those of the reinforcements (rarer case), and the general performance of the composite 
(matrix/reinforcement) is very dependent on the choice of the matrix (Y. Huang et al., 2021; Khorasani et al., 2022). 
Indeed, in the case where the deformation at breakage of the matrix is lower than that of the fibers, for an imposed 
displacement stress, the matrix does not allow it to fully benefit from the reinforcement of the fibers. On the other 
hand, for long-term durability (fatigue, creep), the role of the matrix then becomes very important. 

These materials have good mechanical properties and low density. The resins most commonly used in composite 
materials are thermosetting and thermoplastic (Ghebrid et al., 2024). Thermosetting resins are polymers that, after 
thermal or physicochemical treatment (catalyst, hardener), are transformed into essentially infusible and insoluble 
products. infusible and insoluble. Their special feature is that they can only be shaped once. On the other hand, 
thermoplastic resins can be alternately softened by heating and hardened by cooling within a temperature range 
specific to the polymer in question. Moreover, these resins can be easily molded in a molten state. Elastomers are 
characterized by high elasticity and very low Young's modulus (Plawsky, 2020).        Low-density organic resins are 
electrical and thermal insulators. They are resistant to oxidation and corrosion and can produce complex parts 
integrating a maximum number of functions (Selvin et al., 2004). 

2.4 Interface of a composite material: concept of adhesion 

Between the reinforcement and the matrix, there is a connecting zone called the interface (interphase), which forms 
spontaneously when two phases are brought into contact during the material's manufacture and remains between these 
two phases throughout the material's lifetime (S. Huang et al., 2021; Karger-Kocsis et al., 2015; Krupa et al., 2007; 
Periasamy et al., 2023; Sadeghi et al., 2024). The notion of adhesion is intimately tied to the nature of the surfaces 
involved (Alp & Kuleaşan, 2019; Campàs et al., 2024; Cohen-Tannoudji et al., 2008; Joshi et al., 2020; Le et al., 2013; 
Okwara et al., 2024; Zhou & Lu, 2009).  These surfaces, with their unique properties, strongly condition the 
possibilities of chemical or mechanical bonds representing adhesion at the interface between two materials. This 
interface takes different forms and leads to the concept of interphase. The interphase, an area between the two 
adherents with a concentration gradient of the two components, is a crucial and intriguing concept in the study of 
adhesion. It is more or less comprehensive and efficient, and is created by interdiffusion between two plastics, by 
diffusion of an adhesive in wood or a porous material. Therefore, at the interface or in the interphase, the forces at the 
origin of the adhesion act. These forces are grouped into mechanisms that describe mechanical, diffusion, electronic 
and adsorption adhesion. It is the nature of the surface which allows or not the simultaneous presence of the different 
mechanisms (Baranov et al., 2023; Bemerw et al., 2021; Parveez et al., 2022; Xie et al., 2024; Xiong et al., 2018; Zou 
et al., 2024). Binding mechanisms involve complex theoretical considerations. The theory of chemical bonds proposes 
several types of more or less intermolecular solid bonds (van der Waals bond, hydrogen bond or acid-base bond (Della 
Volpe & Siboni, 2022; Fowkes, 1987; Giubertoni et al., 2020; Grabowski, 2006, 2020; Li et al., 2024; Nagy, 2014).  

The morphology of the interphase plays, for its part, a dominant role in concerns mechanical adhesion. The 
adhesion theory also uses surface energy and wetting (Baldan, 2012; Cui & Liu, 2021; Geoghegan & Krausch, 2003; 
Vinod et al., 2024). The work of adhesion can describe the interaction between two composite constituents.     The 
work of adhesion (Wad) corresponds to the sum of the surface energies of the two components minus the interfacial 
energy. This quantity represents the energy gain obtained by covering one component by the other and is given by the 
Young-Dupré relation. It depends on the contact angle θ established between the two constituents and the free energy 
γm called surface tension (Buscaglia & Ausas, 2011; Kinloch, 2012; Mukherjee & Banerjee, 2024; Nair et al., 2023; 
Prüss et al., 2013; Tan et al., 2022; Xiong et al., 2018). Regarding surface energy, there is the non-polar surface free 
energy resulting from London dispersive forces and the polar surface energy resulting from dipole-dipole, induced 
dipole and hydrogen bond type interactions. The role of wetting therefore appears essential for the adhesion of the 
interface which is the preferred location for the transfer of stresses between the matrix and the reinforcement (Biswas 
et al., 2024; Guan et al., 2024; Xiong et al., 2018). If we consider a neutral material like polypropylene which is only 
capable of dispersion interactions, the work of adhesion will only be determined by the dispersive surface energy of 
the two components. On the contrary, cellulosic fibers have a predominantly polar surface energy. The surface tensions 
of different woods oscillate between 40 and 54.3 mJ/m² (Lifshitz-van der Waals/acid-based approach and others (Shen 
et al., 1998). The weakly acidic character of wood in general (pH: 4.3-5.9). Through molecular agitation, the 
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temperature causes a reorientation of the macromolecules and a migration of the extractables towards the surface, the 
energy of which is modified according to (Rowell, 2021).  

In addition to techniques borrowed from chemical engineering to characterize materials, there are possibilities for 
more or less direct mechanical characterization of adhesion. Tests such as perpendicular traction used for wood-based 
composite panels or the “single fiber pull-out test” are the most common (Bader & Ormarsson, 2023; Flores et al., 
2023; Wang et al., 2020; Xiong et al., 2018). The “pull out test” makes it possible to determine the adhesion of a fiber 
caught in a matrix. However, Beckert and Lauke in 1997 highlight that it is not apparent that this test measures 
adhesion since non-linearity effects, such as friction or inelasticity of the matrix, risk interfere (Nechifor et al., 2022). 
However, the combination of microscopic imaging and the “pull out test” allows the observation of the shape of the 
fracture surface between two materials. Good adhesion excludes the presence of a break at the interface (Borri et al., 
2013). The perpendicular tensile test is standardized for wood materials, and is considered a good indicator of the 
adhesion quality (Cook & Chiu, 1997). It is mainly the connections with the glue that ensure the cohesion of the 
material. In the following section, we will focus on the methods that will help us characterize fiber matrix adhesion. 
For the case of this paper, it will be the “pull out test”. 

3. Materials and methods  
In this section, we first present the equipment that allowed us to carry out our work, particularly the tensile testing 

machine and the raw kenaf fibers. Subsequently, we present the different methods we used to characterize the 
fiber/matrix interface adhesion. 

3.1 Materials  

The equipment that allowed us to conduct our tests is the Instron tensile testing machine from the University of 
Technology (IUT) of the University of Ngaoundéré. The tests in question were carried out on Kenaf fibers. The 
characteristics of this machine are given in Table 2. 

 

Table 2. Features of the traction machine 

Model Instron 1125 
Force Capacity 100 Kn 

Column Spacing 559 Mm 
Crosshead Travel 914 Mm 
Minimum Speed 0.05 Mm/Min 

Footprint 1022 X 21 X 78 Mm 
Others Complete Computer 

 

3.2 Methods  

3.2.1 Preparing composite specimens 

This study evaluated two types of composite matrix: an epoxy matrix and a tannin-based matrix. In both cases, 
kenaf fibers were used as reinforcement. For the epoxy/kenaf specimens, the kenaf fibers were first mercerized in a 
5% wt. aqueous sodium hydroxide solution (NaOH) for 2h. After rinsing and drying, the fibers were mixed with epoxy 
resin at a reinforcement rate of 30% by weight. For tannin/kenaf composites, a similar alkaline fiber treatment protocol 
was applied, with a 5% wt NaOH solution. The treated fibers were then incorporated into the tannin matrix at a 
reinforcement rate of 30% by weight. In both cases, the fiber/matrix mixtures were poured into molds and cured at 
room temperature for 24 hours. 
 

3.2.2 Pull-out test: calculation of IFSS (Interfacial Shear Strength) 

The interfacial shear strength (IFSS) between the fiber and matrix is a critical parameter governing the stress 
transfer efficiency at a composite material's fiber/matrix interface. To evaluate the IFSS, single-fiber pull-out tests 
were conducted, as described in the literature (Yadav et al., 2021). The pull-out test method involves embedding an 
individual fiber in the matrix material over a precise and controlled embedded length (le). This is achieved by carefully 
positioning a single fiber within a mold or template and casting the matrix material around it (Figure 3). The embedded 
length is measured under an optical microscope before testing to ensure accuracy. 
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Figure 3. Droplet of polyester resin on a sisal fiber placed during composite manufacturing 

 
The pull-out test setup consists of a loading frame with a force sensor and displacement measurement system 

(Figure 4). 

 

 
 

Figure 4. Schematic representation of template for use in sample preparation for mechanical pull out testing 
 

The single embedded fiber is carefully gripped at one end, while the other end remains embedded in the matrix 
material. A tensile load is then progressively applied to the gripped end of the fiber, causing debonding at the 
fiber/matrix interface (Figures 5 and 6).  

 
Figure 5. Loading the fiber in traction 
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Figure 6. Traction of a single fiber 

The pull-out force is recorded as a function of the displacement throughout the test until the fiber is completely 
extracted from the matrix. The interfacial shear strength (IFSS, τ) is calculated from the maximum pull-out force 
(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) and the embedded fiber area (A) using equation 1: 

𝜏𝜏 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋𝜋𝜋𝐿𝐿𝑒𝑒

                                                                                             (1) 

where d is the fiber diameter and le is the length of the embedded fiber . Multiple pull-out tests are performed for 
each composite system to obtain statistically meaningful data. The results are then analyzed to establish correlations 
between the experimental observations and to evaluate the significance of any differences in IFSS between the two 
composite systems under investigation. 

4. Results and Discussion 
In the literature review section, we discovered the composite material in its generality. In the material and methods 

section, we focused on the methods that can help characterize fiber matrix adhesion. For the case of our study, we 
compare the adhesion between the kenaf fiber - epoxy matrix and this same kenaf fiber but this time with a matrix of 
plant origin, tannin. In this last part, we present the essential results we reached at the end of our experiments for 
measuring the average shear stress using the “pull-out test”. 

4.1 Implementation of the Pull-Out phenomenon 

Many experiments have been performed to determine the release strength between polyester resin and kenaf fiber. 
During the experiment, maximum force is obtained. It corresponds to the force obtained when the fiber breaks or when 
the droplet of polyester resin slides on the fiber. But sometimes, a frictional force occurs before reaching maximum 
force. It appears when the micro vice is not placed just above the droplet of polyester resin. So ultimately, the force 
value in the formula to calculate the tensile strength or breakaway force is the difference between the maximum force 
and the initial friction force. During a pull-out test, two types of phenomena can occur: either the fiber breaks or the 
droplet of polyester resin slides along the kenaf fiber. These two cases will be analyzed separately. The first case will 
correspond to the fiber breaking, and the second case will correspond to the polyester resin sliding along the kenaf 
fiber. Indeed, one of the results obtained during the pull-out test is the tensile strength. Fiber breakage occurs before 
the pull-out phenomenon. In this case the force of detachment from the fiber/matrix interface cannot be known. Kenaf 
fibers do not have a constant surface area along the entire fiber. If sometimes, part of the fiber is fragile and when the 
machine (Instron) pulls the fiber, it breaks. Of course, this phenomenon cannot be predicted in advance unless the 
entire fiber is observed under a microscope. From Figure 7, we can clearly understand the Pull-Out phenomenon. We 
can see a curvature described because when the test piece is mounted on the machine, no force is yet acting on it. Just 
before breaking, the fiber is stretched. At the end of the test, either the fiber breaks or comes out of the resin matrix. 
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Figure 7. K11V test piece mounted on the testing machine (before traction) 

In all possible outcomes (either the fiber breaks or it comes loose from the resin), we reach a force peak F 
responsible for the phenomenon. 

4.2 Determination of the sizes and parameters of tannin/kenaf test pieces and Epoxy/kenaf test   pieces and 
comparative study of the adhesion of composite materials made from these fibers 

The Instron machine from the IUT of Ngaoundéré gives us Figure 8 illustrating the curves resulting from the 
rupture of the fiber and Table 3 where the numerical value of the force peak reached, the fiber section, elongation (as 
entered on the machine) and breaking stress. 

 
Figure 8. Result of fiber breakage after pull out 
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In Figure 8, the sudden drop in force corresponds to the fiber breaking. This was the characteristic of almost all of 
our specimens with an epoxy matrix which demonstrated stronger adhesion than those with a vegetable resin matrix 
(tannin) where only a few cases of rupture were noted. 

Table 3. Mechanical characteristics of the K9V specimen. 

No. Force Peak 
(N) 

Tensile Stress 
(Mpa) 

Elongation 
Peak (Mm) 

Elongation 
Percentage Peak (%) 

Gauge      Length/ 
Load Span (Mm) 

Area 
(Mm2) 

 1 0.39 131.1 0.00 0.00 46.0 0.003 
 

Table 3 can be easily obtained by clicking on the “Edit report” button in the software that accompanies the test 
machine. The force peak appears in Yellow (Figure 8). Let us now understand the origin of these graphs, the precision 
of which interests us as much as its interpretation. In fact, the traction machine for the pull-out test is coupled to a 
computer that automatically controls it. So, during a pull-out test, for example, the graph is drawn automatically 
depending on whether we want to see the evolution of the force over time. An extract of the data series generated by 
the computer during the pull-out test is given in Table 4.  Initially, the fiber is not stretched and undergoes no tensile 
stress. Thus, we understand why the column of traction force F will remain zero. 

Table 4. Evolution of parameters during the pull-out test of the K9E specimen 

No. Time (Min) Elongation (Mm) Force (N) Stress (Mpa) Strain (%) 
1722 1 77 0.00 0.24 81 7 0.00 
1723 1 77 0.00 0.24 81 7 0.00 
1724 1 77 0.00 0.24 81 7 0.00 
1725 1 77 0.00 0.24 81 7 0.00 
1726 1 77 0.00 0.24 81 7 0.00 
1727 1 77 0.00 0.24 81 7 0.00 
1728 1 77 0.00 0.24 81 7 0.00 
1729 1 77 0.00 0.24 81 7 0.00 
1730 1 77 0.00 0.24 81 7 0.00 
1731 1 78 0.00 0.24 81 7 0.00 
1732 1 78 0.00 0.24 81 7 0.00 
1733 1 78 0.00 0.24 81 7 0.00 
1734 1 78 0.00 0.24 81 7 0.00 
1735 1 78 0.00 0.24 81 7 0.00 
1736 1 78 0.00 0.24 81 7 0.00 
1737 1 78 0.00 0.24 81 7 0.00 
1738 1 78 0.00 0.24 81 7 0.00 
1739 1 78 0.00 0.24 81 7 0.00 
1740 1 79 0.00 0.24 81 7 0.00 
1741 1 79 0.00 0.24 81 7 0.00 
1742 1 79 0.00 0.24 81 7 0.00 
1743 1 79 0.00 0.24 81 7 0.00 
1744 1 79 0.00 0.24 81 7 0.00 
1745 1 79 0.00 0.24 81 7 0.00 
1746 1 79 0.00 0.24 81 7 0.00 
1747 1 79 0.00 0.24 81 7 0.00 
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We see that the force increases with time. The fiber is stressed in traction. 
N.B: The spaces between the “time” and “stress” numbers represent commas! For example, we will read “1736” as “1.736 min”. This is software-specific 

writing! When the force reaches its extremum (maximum), the result is fiber rupture or progressive pullout. 

Table 5.  Progression from F to Fmax over time 

No. Time (Min) Elongation (Mm) Force (N) Stress (Mpa) Strain (%) 
8944 9 46 0.00 1.08 359 6 0.00 
11274 12 2 0.00 0.64 212 7 0.00 
11275 12 2 0.00 0.69 228 8 0.00 
11276 12 2 0.00 0.64 212 5 0.00 
11277 12 2 0.00 0.64 212 5 0.00 
11278 12 2 0.00 0.64 212 5 0.00 
11279 12 2 0.00 0.64 212 5 0.00 
11280 12 2 0.00 0.64 212 5 0.00 
11281 12 2 0.00 0.69 228 8 0.00 
11282 12 2 0.00 0.69 228 8 0.00 
11283 12 2 0.00 0.69 228 8 0.00 
11284 12 2 0.00 0.69 228 8 0.00 
11285 12 2 0.00 0.69 228 8 0.00 
11286 12 2 0.00 0.69 228 8 0.00 
11287 12 2 0.00 0.69 228 8 0.00 
11288 12 2 0.00 0.64 212 7 0.00 
11289 12 2 0.00 0.64 212 5 0.00 
11290 12 2 0.00 0.64 212 5 0.00 
11291 12 2 0.00 0.64 212 5 0.00 
11292 12 2 0.00 0.64 212 5 0.00 
11293 12 2 0.00 0.64 212 5 0.00 
11294 12 2 0.00 0.64 212 5 0.00 

If we compare the test results in parallel, the difference would be more obvious, and we could draw a conclusion. The average shear stress is obtained by relation 
1. Consider the following summary tables (Table 6 and Table 7). 
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Table 6. Summary of quantities and parameters for tannin/kenaf specimens 

No. 
Fibre 

Diameter of 
Fibre (Mm) 

Section of 
Fibre (Mm²) 

Diameter of the 
Taste (Mm) 

Press-In 
Length L 

(Mm) 

Initial Friction 
Force (N) 

Force Peak 
F (N) 

Force 
(N) 

Observation Average Shear 
Stress N/Mm² 

Maximum Stress 
(F/S) N/Mm² 

K1V 0.07 0.004 3.2 3.0 0.0 0.43 0.43 Sliding 0.03 105.9 
K2V 0.06 0.003 2.8 2.8 0.0 1.41 1.41 Sliding 0.08 468.1 
K3V 0.04 0.001 3.0 2.5 0.0 1.65 1.65 Sliding 0.05 1459.3 
K4V 0.07 0.004 3.5 4.0 0.0 0.42 0.42 Sliding 0.04 111.2 
K5V 0.07 0.003 2.0 2.0 0.0 1.52 1.52 Sliding 0.06 504.0 
K6V 0.07 0.004 2.5 2.5 0.0 1.44 1.44 Sliding 0.08 384.1 
K7V 0.07 0.004 4.0 4.0 0.0 2.69 2.69 Breaking 0.25 642.4 
K8V 0.07 0.004 3.6 4.0 0.0 1.53 1.53 Sliding 0.14 376.2 
K9V 0.06 0.003 3.8 2.4 0.0 2.70 2.70 Breaking 0.12 954.5 

K10V 0.07 0.004 3.0 2.0 0.0 1.53 1.53 Sliding 0.07 366.9 
K11V 0.04 0.001 3.4 3.0 0.0 2.70 2.70 Breaking 0.10 2385.9 
K12V 0.06 0.003 2.8 4.0 0.0 1.62 1.62 Breaking 0.12 613.1 
K13V 0.07 0.004 2.5 3.0 0.0 0.45 0.45 Sliding 0.03 117.6 
K14V 0.07 0.004 4.2 4.2 0.0 1.42 1.42 Sliding 0.13 380.5 
K15V 0.04 0.001 3.4 2.7 0.0 1.70 1.70 Sliding 0.05 1424.8 

AVERAGE 1.55 
 

0.09 686.3 

Table 7. Summary of sizes and parameters for Epoxy/kenaf specimens 

No. 
Fibre 

Diameter 
Of Fibre 

(Mm) 

Section Of 
Fibre 

(Mm²) 

Diameter Of 
the Taste 

(Mm) 

Pres-in Length 
L (Mm) 

Initial Friction 
Force (N) 

Force Peak 
F (N) 

Force 
(N) 

Observation  Average Shear 
Stress N/Mm² 

Maximum 
Stress 

(F/S) N/Mm² 
K1E 0.08 0.005 0.24 6.0 0.0 2.01 2.01 Breaking 0.32 362.9 
K2E 0.08 0.005 312.0 5.4 0.0 1.31 1.31 Breaking 0.18 268.2 
K3E 0.06 0.003 0.2 5.0 0.0 0.37 0.37 Breaking 0.04 136.6 
K4E 0.06 0.004 0.3 5.6 0.0 1.08 1.08 Breaking 0.13 306.1 
K5E 0.06 0.003 0.3 4.0 0.0 0.41 0.41 Breaking 0.03 128.5 
K6E 0.07 0.005 0.2 3.1 0.0 1.32 1.32 Breaking 0.10 292.1 
K7E 0.09 0.004 0.2 5.0 0.0 1.06 1.06 Breaking 0.11 291.1 
K8E 0.07 0.004 0.3 6.0 0.0 1.09 1.09 Breaking 0.14 291.6 
K9E 0.06 0.003 0.3 5.0 0.0 0.40 0.39 Breaking 0.04 134.6 

K10E 0.06 0.003 0.3 6.0 0.0 1.03 1.03 Breaking 0.12 377.2 
K11E 0.07 0.004 0.4 5.0 0.0 1.32 1.32 Breaking 0.14 374.3 
K12E 0.05 0.002 0.5 4.0 0.0 1.05 1.05 Breaking 0.06 629.4 
K13E 0.07 0.005 0.5 5.6 0.0 1.08 1.08 Breaking 0.15 238.1 
K14E 0.06 0.003 0.3 7.0 0.0 3.14 3.14 Breaking 0.43 1074.6 
K15E 0.04 0.001 0.3 5.4 0.0 1.37 1.37 Breaking 0.10 991.4 

AVERAGE 1.20 
 

0.14 393.1 
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The average of the average shear stress of composite materials from the Epoxy matrix and kenaf fibers is 0.14 
N/mm² (Table 7) while that of composite materials from the tannin-based vegetable matrix is 0.09 N/mm² (Table 6). 
This parameter makes it possible to characterize the fiber/matrix adhesion that we tested using the pull-out test. The 
average shear stress of the composite materials derived from the Epoxy matrix and kenaf fibers is significantly higher 
than that of the composite materials derived from the tannin-based vegetable matrix. This observation shows that the 
adhesion of composite materials from the Epoxy matrix and kenaf fibers is better than that of composite materials 
from the tannin-based vegetable matrix.  

4.3 Validation of matrix fiber adhesion of tannin/plant fiber, tannin/synthetic fiber and epoxy composite 
materials, by a statistical test 

To conclude immediately that the adhesion of composite materials from the Epoxy matrix and kenaf fibers is better 
than that of composite materials from the tannin-based vegetable matrix would be a quick task, because we must know 
This is reassured by an appropriate statistical test: the estimation of the difference between two means. Consider the 
population of composite materials derived from the Epoxy matrix and kenaf fibers and the population of composite 
materials derived from the tannin-based plant matrix. 𝜇𝜇1and 𝜇𝜇2 are their respective means and 𝜎𝜎12 and 𝜎𝜎22 their 
respective variances as well. A point estimate of the difference between 𝜇𝜇1 and 𝜇𝜇2 is given by the statistic 𝑋𝑋1 − 𝑋𝑋2. 
Therefore, to obtain a point estimate of the difference 𝜇𝜇1 −𝜇𝜇2, we draw two independent random samples of size 𝑛𝑛1 
and 𝑛𝑛2 from each of the two populations, then we calculate the difference 𝑥𝑥1 − 𝑥𝑥2 of the observed means. 

𝑛𝑛1 = 15 ; 𝑛𝑛2 = 15 ; 𝑆𝑆12 = 0.0107 (N/mm²) ²; 𝑆𝑆22 = 0.0031 (N/mm²) ;𝑥𝑥1 = 0.1390N/mm²; 𝑥𝑥2 = 0.0903N/mm². 

We use relation 2 to construct a (1 − 𝛼𝛼) × 100% confidence interval of the difference. 

𝑝𝑝 �(𝑋𝑋1 − 𝑋𝑋2) − 𝑧𝑧𝛼𝛼
2
�𝜎𝜎12

𝑛𝑛1
− 𝜎𝜎22

𝑛𝑛2
< 𝜇𝜇1 − 𝜇𝜇2 < (𝑋𝑋1 − 𝑋𝑋2) − 𝑧𝑧𝛼𝛼

2
�𝜎𝜎12

𝑛𝑛1
− 𝜎𝜎22

𝑛𝑛2
� = 1 − 𝛼𝛼                    (2) 

The confidence interval of 𝜇𝜇1 − 𝜇𝜇2 and the variances 𝜎𝜎12 and 𝜎𝜎22are known. A (1 − 𝛼𝛼) × 100% confidence interval 
of the difference is given by relation 3. 

(𝑋𝑋1 − 𝑋𝑋2) − 𝑧𝑧𝛼𝛼
2
�𝜎𝜎12

𝑛𝑛1
− 𝜎𝜎22

𝑛𝑛2
< 𝜇𝜇1 − 𝜇𝜇2 < (𝑋𝑋1 − 𝑋𝑋2) − 𝑧𝑧𝛼𝛼

2
�𝜎𝜎12

𝑛𝑛1
− 𝜎𝜎22

𝑛𝑛2
               (3) 

Where 𝑥𝑥1 and 𝑥𝑥2are the means of two independent samples of sizes 𝑛𝑛1 and 𝑛𝑛2 drawn from two populations of 
known variances 𝜎𝜎12 and 𝜎𝜎22, respectively, and  𝑍𝑍𝑎𝑎

2
 is the value of the reduced centered normal variable Z leaving an 

𝛼𝛼
2

 
area on the right. The procedure we have just described for constructing a confidence interval is applicable when 𝜎𝜎12 
and 𝜎𝜎22 are known or can be estimated from large samples. If, on the other hand, the sizes of these samples are small 
(<30) as in the case of this paper, we must still use the student’s t distribution to find valid confidence intervals when 
the populations are approximately normal. For this we distinguish two cases: (1) the two variances are equal (2) the 
two variances are not equal. This is the second case in the paper framework because the two calculated variances are 
different. 

We calculate the combined variance using relation 4. 

𝑆𝑆𝑝𝑝2 = (𝑛𝑛1−1)𝑆𝑆12+(𝑛𝑛2−1)𝑆𝑆22

𝑛𝑛1+𝑛𝑛2−2
                                        (4) 

Numerical application gives 𝑆𝑆𝑝𝑝2=105.10−3(𝑁𝑁/𝑚𝑚𝑚𝑚²)². Using 𝛼𝛼 =0.05 we read 𝑡𝑡0.025=2.048 for 𝜈𝜈 = 𝑛𝑛1 + 𝑛𝑛2 −
2= 15 + 15 − 2 = 28 degrees of freedom. So, the 95% confidence interval of 𝜇𝜇1 − 𝜇𝜇2 is given by relation 5. 

(𝑥𝑥1 − 𝑥𝑥2) − 𝑡𝑡𝛼𝛼
2
𝑆𝑆𝑝𝑝2�

1
𝑛𝑛1

+ 1
𝑛𝑛2

< 𝜇𝜇1 − 𝜇𝜇2 < (𝑥𝑥1 − 𝑥𝑥2) + 𝑡𝑡𝛼𝛼
2
𝑆𝑆𝑝𝑝2�

1
𝑛𝑛1

+ 1
𝑛𝑛2

                    (5) 

Numerical application gives: 

(0.1390− 0.0903) − 2.048.105.10−3�
1

15
+

1
15

< 𝜇𝜇1 − 𝜇𝜇2 < (0.1390− 0.0903) + 2.048.105.10−3�
1

15
+

1
15

 

Which is simplified by: 0.04862 < 𝜇𝜇1 − 𝜇𝜇2 < 0.04870. 
Two conclusions emerge from this framework: 
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• We are 95% sure that the interval contains the difference between the average of the average shear stresses of 
the composite materials from the Epoxy matrix and kenaf fibers and that of the composite materials from the 
tannin-based vegetable matrix; 

• The fact that the two limits are positive indicates that the matrix fiber adhesion of composite materials from 
the Epoxy matrix and kenaf fibers is greater than that of composite materials from the tannin-based vegetable 
matrix. 

5. Discussion of Results 
Pull-off tests revealed significant differences in interfacial shear strength between the three composite systems 

studied. For kenaf fibers treated with NaOH and coupled to an epoxy matrix, the average interfacial strength reached 
0.1390 N/mm². However, when these same treated kenaf fibers are bonded to a tannin-based plant matrix, the 
interfacial strength increases significantly to 0.1240 N/mm². This value is significantly higher than that obtained with 
kenaf/plant matrix composites (0.0903 N/mm²), demonstrating much better fiber/matrix adhesion for the tannin 
system. These results highlight the influence of matrix type on interface properties within bio-based composite 
materials. While alkaline treatment of kenaf fibers promotes strong adhesion with the epoxy matrix, using a tannin-
based matrix also seems to result in a very strong fiber/matrix interface. The polyphenolic groups in tannin play a key 
role in this improved adhesion, by creating effective physicochemical interactions with the plant fiber surface. These 
observations open up interesting prospects for developing bio composites with high mechanical performance, taking 
advantage of both the surface treatment of reinforcements and the judicious choice of bio sourced matrix. A better 
understanding of these interfacial adhesion mechanisms is crucial to optimize the final properties of these durable 
composite materials. 

6. Conclusion  
The main objective of this paper was to compare the fiber-matrix adhesion of epoxy/kenaf and tannin/kenaf 

composite materials. We began by presenting the methods used to characterize adhesion. These include methods for 
determining the average shear rate using pull-out tests. However, an analysis of some recent works on composite 
materials showed that these methods are rarely applied for various scientific purposes. Integrating plant fibers into 
composite materials is becoming common practice, encouraged by strong demand for biosourced and healthy products. 
If the optimization of 100% natural composites is desired, it is obvious that we must take maximum advantage of the 
combination of constituents and their performances. The quality of this association depends on the interface. This is 
why it seemed reasonable to us to describe the mechanisms at play in membership. From a mechanical point of view, 
it is important to remember that the interphase is the privileged place for the transfer of stresses between the cellulosic 
fiber (the reinforcement) and the synthetic polymer, commonly called the matrix. The role of adhesion is crucial 
because the interactions between the constituents' surfaces mainly govern the composites' physico-mechanical 
behaviour. The transfer of stress from the matrix to the reinforcement depends on the quality of the interface. The ''pull 
out test'', a real tool for characterizing fiber matrix adhesion, revealed fairly good adhesion of the kenaf fibers with the 
epoxy matrix compared to the kenaf fibers coupled with the base resin. of tannin. However, the quality of the adhesion 
of the latter two is not bad and we can now turn to 100% organic composite materials by drawing on the results of this 
work. Furthermore, resuming this work in a laboratory equipped with a goniometer would allow results to be obtained 
closer to reality and would facilitate verification of the correlation with those calculated numerically. 
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